Liu Mengjun, Yang Ruizhi, Guo Zhenghao, Chen Kexu, Feng Haoqiang, Lu Han, Huang Shijian, Zhang Minmin, Ye Huapeng, Shui Lingling
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China.
Joint Laboratory of Optofluidic Technology and Systems, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China.
Nat Commun. 2024 Oct 30;15(1):9389. doi: 10.1038/s41467-024-53530-9.
Lithography technology is a powerful tool for preparing complex microstructures through projecting patterns from static templates with permanent features onto samples. To simplify fabrication and alignment processes, dynamic photomask for multiple configurations preparation becomes increasingly noteworthy. Hereby, we report a dynamic photomask by assembling the electrically stimulated nematic liquid crystal (NLC) into multifarious architectures. This results in reconfigurable and switchable diffraction patterns due to the hybrid phase arising from the NLC molecular orientations. These diffraction patterns are adopted as metamask to produce multiple microstructures with height gradients in one-step exposure and hierarchical microstructures through multiple in-situ exposures using standard photolithography. The fabricated pattern has feature size about 3.2 times smaller than the electrode pattern and can be transferred onto silicon wafer. This strategy can be extended to design diverse microstructures with great flexibility and controllability, offers a promising avenue for fabricating metamaterials via complex structures with simplified lithography processes.
光刻技术是一种强大的工具,可通过将具有永久特征的静态模板上的图案投影到样品上来制备复杂的微结构。为了简化制造和对准过程,用于多种配置制备的动态光掩模变得越来越值得关注。在此,我们报道了一种通过将电刺激向列相液晶(NLC)组装成多种结构而形成的动态光掩模。由于NLC分子取向产生的混合相,这导致了可重构和可切换的衍射图案。这些衍射图案被用作元掩模,通过标准光刻技术在一步曝光中产生具有高度梯度的多个微结构,并通过多次原位曝光产生分层微结构。所制造的图案的特征尺寸比电极图案小约3.2倍,并且可以转移到硅片上。这种策略可以扩展到设计具有极大灵活性和可控性的各种微结构,为通过简化光刻工艺制造具有复杂结构的超材料提供了一条有前途的途径。