Teke Nakul K, Melekamburath Ajay, Gaudel Bimal, Valeev Edward F
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.
J Phys Chem A. 2024 Nov 14;128(45):9819-9828. doi: 10.1021/acs.jpca.4c04667. Epub 2024 Oct 30.
To follow up on the unexpectedly good performance of several coupled-cluster models with approximate inclusion of 3-body clusters [Rishi, V.; Valeev, E. F. 2019, 151, 064102.] we performed a more complete assessment of the 3CC method [Feller, D. . 2008, 129, 204105.] for accurate computational thermochemistry in the standard HEAT framework. New spin-integrated implementation of the 3CC method applicable to closed- and open-shell systems utilizes a new automated toolchain for derivation, optimization, and evaluation of operator algebra in many-body electronic structure. We found that with a double-ζ basis set the 3CC correlation energies and their atomization energy contributions are almost always more accurate (with respect to the CCSDTQ reference) than the CCSDT model as well as the standard CCSD(T) model. The mean absolute errors in cc-pVDZ {3CC, CCSDT, and CCSD(T)} electronic (per valence electron) and atomization energies relative to the CCSDTQ reference for the HEAT data set [Tajti, A. . 2004, 121, 11599-11613.], were {24, 70, 122} μ/ and {0.46, 2.00, 2.58} kJ/mol, respectively. The mean absolute errors in the complete-basis-set limit {3CC, CCSDT, and CCSD(T)} atomization energies relative to the HEAT model reference, were {0.52, 2.00, and 1.07} kJ/mol, The significant and systematic reduction of the error by the 3CC method and its lower cost than CCSDT suggests it as a viable candidate for post-CCSD(T) thermochemistry applications, as well as the preferred alternative to CCSDT in general.
为了跟进几个近似包含三体团簇的耦合簇模型意外的良好性能[Rishi, V.; Valeev, E. F. 2019, 151, 064102.],我们在标准HEAT框架下对用于精确计算热化学的3CC方法[Feller, D.. 2008, 129, 204105.]进行了更全面的评估。适用于闭壳层和开壳层体系的3CC方法的新自旋积分实现利用了一个新的自动化工具链,用于多体电子结构中算符代数的推导、优化和评估。我们发现,使用双ζ基组时,3CC相关能及其原子化能贡献几乎总是比CCSDT模型以及标准CCSD(T)模型更准确(相对于CCSDTQ参考)。对于HEAT数据集[Tajti, A.. 2004, 121, 11599 - 11613.],cc-pVDZ基组下{3CC、CCSDT和CCSD(T)}的电子(每个价电子)和原子化能相对于CCSDTQ参考的平均绝对误差分别为{24、70、122} μ/和{0.46、2.00、2.58} kJ/mol。相对于HEAT模型参考,完整基组极限下{3CC、CCSDT和CCSD(T)}的原子化能平均绝对误差分别为{0.52、2.00和1.07} kJ/mol。3CC方法误差的显著且系统的降低以及其比CCSDT更低的成本表明,它是CCSD(T)后热化学应用的可行候选方法,也是一般情况下CCSDT的首选替代方法。