Suppr超能文献

人工智能模型在基于腰椎 T2 加权 MRI 的下腰痛预测中的作用。

Role of Artificial intelligence model in prediction of low back pain using T2 weighted MRI of Lumbar spine.

机构信息

Department of Medical Imaging Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Karnataka, Manipal, 576104, India.

Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.

出版信息

F1000Res. 2024 Oct 10;13:1035. doi: 10.12688/f1000research.154680.2. eCollection 2024.

Abstract

BACKGROUND

Low back pain (LBP), the primary cause of disability, is the most common musculoskeletal disorder globally and the primary cause of disability. Magnetic resonance imaging (MRI) studies are inconclusive and less sensitive for identifying and classifying patients with LBP. Hence, this study aimed to investigate the role of artificial intelligence (AI) models in the prediction of LBP using T2 weighted MRI image of the lumbar spine.

METHODS

This was a prospective case-control study. A total of 200 MRI patients (100 cases and controls each) referred for lumbar spine and whole spine screening were included. The scans were performed using 3.0 Tesla MRI (United Imaging Healthcare). T2 weighted images of the lumbar spine were segmented to extract radiomic features. Machine learning (ML) models, such as random forest, decision tree, logistic regression, K-nearest neighbors, adaboost, and deep learning methods (DL), such as ResNet and GoogleNet, were used, and performance measures were calculated.

RESULTS

Our study showed that Random forest and AdaBoost are the most reliable ML models for predicting LBP. Random forest showed high performance with area under curve (AUC) values from 0.83 to 0.88 across all lumbar vertebrae and L2-L3, L3-L4, and L4-L5 intervertebral discs (IVDs), with AUCs of 0.88 the highest at L5-S1 IVD (0.92). Adaboost demonstrated high performance at the L2-L5 vertebrae with AUC values of 0.82 to 0.90, with the highest AUC (0.97) at the L5-S1 IVD. Among the DL models, GoogleNet outperformed the other models at 30 epochs with an accuracy of 0.85, followed by ResNet 18 (30 epochs) with an accuracy of 0.84.

CONCLUSION

The study demonstrated that ML and DL models can effectively predict LBP from MRI T2 weighted image of the lumbar spine. ML and DL models could also enhance the diagnostic accuracy of LBP, potentially leading to better patient management and outcomes.

摘要

背景

腰痛(LBP)是导致残疾的主要原因,是全球最常见的肌肉骨骼疾病,也是导致残疾的主要原因。磁共振成像(MRI)研究对于识别和分类腰痛患者的结果并不明确,也不敏感。因此,本研究旨在探讨人工智能(AI)模型在使用腰椎 T2 加权 MRI 图像预测腰痛中的作用。

方法

这是一项前瞻性病例对照研究。共纳入 200 例 MRI 患者(每组 100 例病例和对照),这些患者因腰椎和全脊柱筛查而接受 MRI 检查。扫描使用 3.0T MRI(联影医疗)进行。对腰椎 T2 加权图像进行分割以提取放射组学特征。使用机器学习(ML)模型,如随机森林、决策树、逻辑回归、K-最近邻、自适应增强和深度学习方法(DL),如 ResNet 和 GoogleNet,并计算性能指标。

结果

我们的研究表明,随机森林和 AdaBoost 是预测 LBP 的最可靠 ML 模型。随机森林在所有腰椎和 L2-L3、L3-L4 和 L4-L5 椎间盘(IVD)中表现出较高的性能,AUC 值为 0.83 至 0.88,在 L5-S1 IVD 中 AUC 值最高(0.92)。AdaBoost 在 L2-L5 椎体中表现出较高的性能,AUC 值为 0.82 至 0.90,在 L5-S1 IVD 中 AUC 值最高(0.97)。在 DL 模型中,GoogleNet 在 30 个时期的准确率为 0.85,优于其他模型,其次是 ResNet 18(30 个时期),准确率为 0.84。

结论

研究表明,ML 和 DL 模型可以有效地从腰椎 T2 加权 MRI 图像预测 LBP。ML 和 DL 模型还可以提高 LBP 的诊断准确性,从而可能改善患者的管理和预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8026/11525297/5f75010766b8/f1000research-13-173049-g0000.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验