Som Narayan N, Opalinska Agnieszka, Chandel Madhurya, Pataniya Pratik M, Koltsov Iwona, Smalc-Koziorowska Julita, Swiderska-Sroda Anna, Gierlotka Stanislaw, Ck Sumesh, Lojkowski Witold
Institute of High Pressure Physics, Polish Academy of Science, Sokolowska 29/37, Warsaw 01-142, Poland.
Faculty of Mechatronics, Warsaw University of Technology, św. Andrzeja Boboli 8, Warsaw 02-525, Poland.
ACS Appl Energy Mater. 2024 Oct 11;7(20):9402-9413. doi: 10.1021/acsaem.4c01932. eCollection 2024 Oct 28.
Polymeric carbon nitride (PCN) and PCN-ZnO nanocomposites are promising candidates for catalysis, particularly for hydrogen evolution reactions (HER). However, their catalytic efficiency requires enhancement to fully realize their potential. This study aims to improve the HER performance of PCN by synthesizing PCN-ZnO nanocomposites using melamine as a precursor. Two synthesis methods were employed: thermal condensation (Method 1) and liquid exfoliation (Method 2). Method 1 resulted in a composite with a 2.44 eV energy gap and reduced particle size, with significantly enhanced performance as a bifunctional electrocatalyst for simultaneous hydrogen and oxygen production. In contrast, Method 2 produced a nanocomposite with an enhanced surface area and a minor alteration in the band gap. In alkaline electrolytes, the PCN-ZnO nanocomposite synthesized with Method 1 exhibited high HER performance with an overpotential of 281 mV, outperforming pristine PCN (382 mV) and ZnO (302 mV), along with improved oxygen evolution reaction (OER) activity. Further analysis in a two-electrode alkaline electrolyzer using PCN-ZnO nanocomposite as both the anode and cathode demonstrated its promise as a bifunctional electrocatalyst. Density functional theory (DFT) calculations explained the enhanced catalytic activity of the PCN-ZnO nanocomposite, confirming that hydrogen evolution occurs through the Heyrovsky process, consistent with experimental results. Notably, the solar-to-hydrogen (STH) efficiency of the PCN-ZnO nanocomposite was four times greater, at 21.7% compared to 5.2% for the PCN monolayer, underscoring its potential for efficient solar-driven hydrogen production. This work paves the way for future advancements in the design of high-performance electrocatalysts for sustainable energy applications.
聚合氮化碳(PCN)和PCN-ZnO纳米复合材料是催化领域很有前景的候选材料,尤其适用于析氢反应(HER)。然而,它们的催化效率需要提高,以充分发挥其潜力。本研究旨在通过以三聚氰胺为前驱体合成PCN-ZnO纳米复合材料来提高PCN的HER性能。采用了两种合成方法:热缩聚法(方法1)和液相剥离法(方法2)。方法1得到了一种带隙为2.44 eV且粒径减小的复合材料,作为同时产氢和产氧的双功能电催化剂,其性能显著增强。相比之下,方法2制备的纳米复合材料具有更大的表面积,且带隙有轻微变化。在碱性电解质中,用方法1合成的PCN-ZnO纳米复合材料表现出较高的HER性能,过电位为281 mV,优于原始PCN(382 mV)和ZnO(302 mV),同时析氧反应(OER)活性也有所提高。在使用PCN-ZnO纳米复合材料作为阳极和阴极的双电极碱性电解槽中的进一步分析表明,它有望成为一种双功能电催化剂。密度泛函理论(DFT)计算解释了PCN-ZnO纳米复合材料催化活性增强的原因,证实析氢是通过海洛夫斯基过程发生的,这与实验结果一致。值得注意的是,PCN-ZnO纳米复合材料的太阳能到氢能(STH)效率提高了四倍,达到21.7%,而PCN单层的效率为5.2%,突出了其在高效太阳能驱动制氢方面的潜力。这项工作为高性能电催化剂设计在可持续能源应用中的未来发展铺平了道路。