Suppr超能文献

微生物群的多酚重塑可减少甲烷排放。

Polyphenol rewiring of the microbiome reduces methane emissions.

作者信息

McGivern Bridget B, Ellenbogen Jared B, Hoyt David W, Bouranis John A, Stemple Brooke P, Daly Rebecca A, Bosman Samantha H, Sullivan Matthew B, Hagerman Ann E, Chanton Jeffrey P, Tfaily Malak M, Wrighton Kelly C

出版信息

bioRxiv. 2024 Oct 22:2024.10.22.619724. doi: 10.1101/2024.10.22.619724.

Abstract

Methane mitigation is regarded as a critical strategy to combat the scale of global warming. Currently, about 40% of methane emissions originate from microbial sources, which is causing strategies to suppress methanogens, either through direct toxic effects or by diverting their substrates and energy, to gain traction. Problematically, current microbial methane mitigation knowledge derives from rumen studies and lacks detailed microbiome-centered insights, limiting translation across ecosystems. Here we utilize genome-resolved metatranscriptomes and metabolomes to assess the impact of a proposed methane inhibitor, catechin, on greenhouse gas emissions for high-methane-emitting peatlands. In microcosms, catechin drastically reduced methane emissions by 72-84% compared to controls. Longitudinal sampling allowed for reconstruction of a novel catechin degradation pathway involving Actinomycetota and Clostridium, which break down catechin into smaller phenolic compounds within the first 21 days, followed by degradation of phenolic compounds by Pseudomonas_E from days 21 to 35. These genomes also co-expressed hydrogen-uptake genes, suggesting that hydrogenases may act as a hydrogen sink during catechin degradation, depriving methanogens of substrates. This was supported by decreased gene expression in hydrogenotrophic and hydrogen-dependent methylotrophic methanogens under catechin treatment. We also saw reduced gene expression from genomes inferred to be functioning syntrophically with hydrogen-utilizing methanogens. We propose that catechin metabolic redirection effectively starves hydrogen-utilizing methanogens, offering a potent avenue for curbing methane emissions across diverse environments including ruminants, landfills, and constructed or managed wetlands.

摘要

甲烷减排被视为应对全球变暖规模的关键策略。目前,约40%的甲烷排放源自微生物源,这使得通过直接毒性作用或转移其底物和能量来抑制产甲烷菌的策略受到关注。问题在于,当前关于微生物甲烷减排的知识源于瘤胃研究,缺乏以微生物群落为中心的详细见解,限制了在不同生态系统中的应用。在此,我们利用基因组解析的宏转录组和代谢组来评估一种拟议的甲烷抑制剂儿茶素对高甲烷排放泥炭地温室气体排放的影响。在微观世界中,与对照组相比,儿茶素使甲烷排放量大幅降低了72 - 84%。纵向采样使得能够重建一条涉及放线菌门和梭菌属的新型儿茶素降解途径,它们在前21天将儿茶素分解为较小的酚类化合物,随后从第21天到35天由假单胞菌_E降解酚类化合物。这些基因组还共同表达了氢摄取基因,表明氢化酶可能在儿茶素降解过程中作为氢汇,剥夺产甲烷菌的底物。儿茶素处理下氢营养型和氢依赖型甲基营养型产甲烷菌的基因表达降低支持了这一点。我们还观察到与利用氢的产甲烷菌共生发挥作用的基因组的基因表达减少。我们提出儿茶素的代谢重定向有效地使利用氢的产甲烷菌饥饿,为抑制包括反刍动物、垃圾填埋场以及人工建造或管理的湿地等不同环境中的甲烷排放提供了一条有效途径。

相似文献

5
Aural toilet (ear cleaning) for chronic suppurative otitis media.慢性化脓性中耳炎的耳道清理(耳部清洁)
Cochrane Database Syst Rev. 2025 Jun 9;6(6):CD013057. doi: 10.1002/14651858.CD013057.pub3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验