Suppr超能文献

使用 LASSO 回归减轻预测模型中特征选择和重要性评估的偏差。

Mitigating biases in feature selection and importance assessments in predictive models using LASSO regression.

机构信息

Faculty of Data Science, Musashino University, 3-3-3 Ariake Koto-ku, Tokyo 135-8181, Japan.

出版信息

Oral Oncol. 2024 Dec;159:107090. doi: 10.1016/j.oraloncology.2024.107090. Epub 2024 Nov 1.

Abstract

Yuan et al. developed a predictive model for early response using sub-regional radiomic features from multi-sequence MRI alongside clinical factors. However, biases in feature selection and assessment may lead to misleading conclusions regarding feature importance. This paper elucidates the biases induced by machine learning models and advocates for a robust methodology utilizing statistical techniques, such as Chi-squared tests and p-values, to uncover true associations. By emphasizing the vital distinction between true and model-specific associations, we promote a comprehensive approach that integrates multiple modeling techniques. This strategy enhances the reliability of predictive models in medical imaging, ensuring that outcomes are based on objective relationships and ultimately improving patient care.

摘要

袁等人开发了一种使用多序列 MRI 的亚区域放射组学特征和临床因素进行早期反应预测的模型。然而,特征选择和评估中的偏差可能导致特征重要性的误导性结论。本文阐明了机器学习模型引起的偏差,并提倡使用统计技术(如卡方检验和 p 值)来揭示真实关联的稳健方法。通过强调真实关联和模型特定关联之间的重要区别,我们促进了一种综合方法,该方法整合了多种建模技术。这种策略提高了医学成像中预测模型的可靠性,确保结果基于客观关系,并最终改善患者护理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验