Suppr超能文献

离子聚合物作为双捕获剂用于基于双金属NiCoO纳米颗粒类过氧化物酶活性的氨基甲酸乙酯即时检测适配体侧流分析试纸条中。

Ionic polymers as double-capture agents in an aptamer lateral flow assay strip for point-of-care detection of ethyl carbamate using peroxidase-like activity of bimetallic NiCoO nanoparticles.

作者信息

He Huanhuan, Zheng Jia, Su Jian, Xia Lian, Tang Yue, Wu Yuangen

机构信息

Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China.

Wuliangye Yibin Co., Ltd, Yibin, 644000, Sichuan Province, China.

出版信息

Talanta. 2025 Feb 1;283:127139. doi: 10.1016/j.talanta.2024.127139. Epub 2024 Oct 31.

Abstract

A novel aptamer LFA (Apt-LFA) strip is first constructed for ethyl carbamate (EC) detection, in which cationic polyethyleneimine (PEI) and anionic polyacrylamide (APAM) are used as double-capture agents. The black NiCoO nanoparticles (NCO NPs) encapsulated by EC1-34 aptamer are employed as recognition probes. The added EC will bind to EC1-34 aptamer on the probes, so that the test-line (T-line) immobilized with APAM can electrostatically capture the exposed NCO NPs. The control-line (C-line) sprayed with PEI can capture the excessive black recognition probes. The peroxidase-like activity of bimetallic NCO NPs is employed as signal amplification to improve the sensitivity of Apt-LFA strip. The naked eye discernible concentration of EC is 5 μg L and the detection limit (LOD) is as low as 1.36 μg L. The Apt-LFA strip has the advantages of strong stability, simplicity and low cost, which provide a new method for EC detection and offer a new way for designing LFA.

摘要

首次构建了一种用于氨基甲酸乙酯(EC)检测的新型适配体侧向流动分析(Apt-LFA)试纸条,其中阳离子聚乙烯亚胺(PEI)和阴离子聚丙烯酰胺(APAM)用作双重捕获剂。由EC1-34适配体包裹的黑色镍钴氧化物纳米颗粒(NCO NPs)用作识别探针。添加的EC会与探针上的EC1-34适配体结合,从而使固定有APAM的测试线(T线)能够静电捕获暴露的NCO NPs。喷有PEI的控制线(C线)可以捕获过量的黑色识别探针。利用双金属NCO NPs的过氧化物酶样活性进行信号放大,以提高Apt-LFA试纸条的灵敏度。EC的肉眼可辨浓度为5 μg/L,检测限(LOD)低至1.36 μg/L。该Apt-LFA试纸条具有稳定性强、操作简单和成本低等优点,为EC检测提供了一种新方法,并为设计侧向流动分析提供了一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验