Suppr超能文献

当前在可持续绿色金属制造中利用电子垃圾的回收创新。

Current recycling innovations to utilize e-waste in sustainable green metal manufacturing.

作者信息

Hossain Rumana, Sahajwalla Veena

机构信息

Centre for Sustainable Materials Research and Technology, SMaRT@UNSW, School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales, Australia.

出版信息

Philos Trans A Math Phys Eng Sci. 2024 Dec 2;382(2284):20230239. doi: 10.1098/rsta.2023.0239. Epub 2024 Nov 4.

Abstract

The ever-increasing market demand and the rapid uptake of the technologies of electronics create an unavoidable generation of high-volume electronic waste (e-waste). E-waste is embedded with valuable metals, alloys, precious metals and rare earth elements. A substantial portion of e-waste ends up in landfills and is incinerated due to its complex multi-material structure, creating loss of resources and often leading to environmental contamination from the release of landfill leachates and combustion gases. Conversely, due to the ongoing demand for valuable metals, global industrial and manufacturing supply chains are experiencing enormous pressure. To address this issue, researchers have put multifaceted efforts into developing viable technologies and emphasized right-scaling for e-waste reclamation. Several conventional and emerging recycling technologies have been recognized to be efficient in recovering metal alloys, precious and rare earth metals from e-waste. The recovery of valuable metals from e-waste will create an alternative source of value-added raw materials, which could become part of supply chains for manufacturing. This review discusses the urgency of metal recycling from e-waste for sustainability and economic benefit, up-to-date recycling technologies with an emphasis on their potential role in creating a circular economy in e-waste management.This article is part of the discussion meeting issue 'Sustainable metals: science and systems'.

摘要

不断增长的市场需求以及电子技术的迅速普及不可避免地产生了大量电子垃圾(电子废弃物)。电子废弃物中含有贵金属、合金、稀有金属和稀土元素。由于其复杂的多材料结构,相当一部分电子废弃物最终被填埋或焚烧,造成资源损失,并常常因填埋渗滤液和燃烧气体的释放而导致环境污染。相反,由于对贵金属的持续需求,全球工业和制造业供应链正承受巨大压力。为解决这一问题,研究人员已在多方面努力开发可行技术,并强调对电子废弃物回收进行合理规模规划。人们已经认识到,几种传统和新兴的回收技术在从电子废弃物中回收金属合金、贵金属和稀土金属方面效率很高。从电子废弃物中回收贵金属将创造一种增值原材料的替代来源,这可能成为制造业供应链的一部分。本综述讨论了从电子废弃物中回收金属以实现可持续性和经济效益的紧迫性、最新的回收技术,并重点介绍了它们在电子废弃物管理中创造循环经济的潜在作用。本文是“可持续金属:科学与系统”讨论会文章的一部分。

相似文献

1
Current recycling innovations to utilize e-waste in sustainable green metal manufacturing.
Philos Trans A Math Phys Eng Sci. 2024 Dec 2;382(2284):20230239. doi: 10.1098/rsta.2023.0239. Epub 2024 Nov 4.
2
The Minderoo-Monaco Commission on Plastics and Human Health.
Ann Glob Health. 2023 Mar 21;89(1):23. doi: 10.5334/aogh.4056. eCollection 2023.
3
4
Supply and demand of some critical metals and present status of their recycling in WEEE.
Waste Manag. 2017 Jul;65:113-127. doi: 10.1016/j.wasman.2017.04.003. Epub 2017 Apr 12.
5
Concepts of circular economy for sustainable management of electronic wastes: challenges and management options.
Environ Sci Pollut Res Int. 2023 Apr;30(17):48654-48675. doi: 10.1007/s11356-023-26052-y. Epub 2023 Feb 28.
7
A review on recovery processes of metals from E-waste: A green perspective.
Sci Total Environ. 2023 Feb 10;859(Pt 2):160391. doi: 10.1016/j.scitotenv.2022.160391. Epub 2022 Nov 21.
8
Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability.
Adv Mater. 2022 Jun;34(25):e2103346. doi: 10.1002/adma.202103346. Epub 2021 Oct 10.
9
Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities.
Waste Manag. 2015 Aug;42:128-36. doi: 10.1016/j.wasman.2015.04.024. Epub 2015 May 6.
10
E-waste mining and the transition toward a bio-based economy: The case of lamp phosphor powder.
MRS Energy Sustain. 2022;9(2):494-500. doi: 10.1557/s43581-022-00026-y. Epub 2022 Apr 14.

引用本文的文献

1
Deep-sea mining and its risks for social-ecological systems: Insights from simulation-based analyses.
PLoS One. 2025 Mar 28;20(3):e0320888. doi: 10.1371/journal.pone.0320888. eCollection 2025.
2
Sustainable metals: integrating science and systems approaches.
Philos Trans A Math Phys Eng Sci. 2024 Dec 2;382(2284):20230247. doi: 10.1098/rsta.2023.0247. Epub 2024 Nov 4.

本文引用的文献

3
NaOH-assisted low-temperature roasting to recover spent LiFePO batteries.
Waste Manag. 2022 Nov;153:347-354. doi: 10.1016/j.wasman.2022.09.026. Epub 2022 Sep 30.
6
Potential and current practices of recycling waste printed circuit boards: A review of the recent progress in pyrometallurgy.
J Environ Manage. 2022 Aug 15;316:115242. doi: 10.1016/j.jenvman.2022.115242. Epub 2022 May 16.
7
The development of sustainable IoT E-waste management guideline for households.
Chemosphere. 2022 Sep;303(Pt 1):134767. doi: 10.1016/j.chemosphere.2022.134767. Epub 2022 May 5.
8
Yttrium and europium separation by solvent extraction with undiluted thiocyanate ionic liquids.
RSC Adv. 2019 Feb 7;9(9):4876-4883. doi: 10.1039/c8ra09797f. eCollection 2019 Feb 5.
9
A review on recent advancements in recovery of valuable and toxic metals from e-waste using bioleaching approach.
Chemosphere. 2022 Jan;287(Pt 2):132230. doi: 10.1016/j.chemosphere.2021.132230. Epub 2021 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验