Lu Zichun, Liu Lingke, Miao Runtian, Zhang Ning, Gao Minjuan, Fan Xingyu, Li Yueqin
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China.
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China.
Int J Biol Macromol. 2024 Dec;282(Pt 2):136969. doi: 10.1016/j.ijbiomac.2024.136969. Epub 2024 Oct 28.
The ultrafast preparation of electrically conductive hydrogels to endow high sensing performance and temperature tolerance remains a critical challenge. Herein, lignosulfonate sodium-templated polypyrrole (LS-PPy) nanofillers were rapidly introduced into polyacrylic acid (PAA) hydrogel through ultrafast free radical polymerization in a glycerol/water binary solvent system. The resultant LS-PPy/PAA electrically conductive organohydrogel possesses satisfactory mechanical performance (strength of 56 kPa at a tensile strain of 800 %), strong adhesion, and a desirable low freezing point (-35 °C). Furthermore, this organohydrogel exhibits high strain sensitivity (gauge factor = 2.65), fast response time (∼160 ms), low signal hysteresis, and excellent cyclic stability (over 1200 cycles). And the wearable LS-PPy/PAA organohydrogel sensor could accurately and real-time monitor various intense or subtle human movements, such as joint bending, facial expression and hand writing. Besides, the developed LS-PPy/PAA temperature sensor can respond to environmental temperature variations over a wide range of -20-100 °C. High resolution of 0.5 °C with remarkable sensitivity (-0.80 %/°C and linearity of R = 0.99) and repeatability were achieved within 36.5-40 °C, which makes it suitable for human body temperature monitoring. All these results demonstrate the substantial prospective value of the LS-PPy/PAA hydrogel in wearable sensors and other associated fields.