Ödén Jakob, Eriksson Kjell, Kaushik Suryakant, Traneus Erik
Department of Research, RaySearch Laboratories AB, Stockholm, Sweden.
J Appl Clin Med Phys. 2025 Jan;26(1):e14535. doi: 10.1002/acm2.14535. Epub 2024 Nov 3.
Although proton relative biological effectiveness (RBE) depends on factors like linear energy transfer (LET), tissue properties, dose, and biological endpoint, a constant RBE of 1.1 is recommended in clinical practice. This study surveys proton institutions to explore activities using functionalities beyond a constant proton RBE.
Research versions of RayStation integrate functionalities considering variable proton RBE, LET, proton track-ends, and dirty dose. A survey of 19 institutions in Europe and the United States, with these functionalities available, investigated clinical adoption and research prospects using a 25-question online questionnaire.
Of the 16 institutions that responded (84% response rate), 13 were clinically active. These clinical institutions prescribe RBE = 1.1 but also employ planning strategies centered around special beam arrangements to address potentially enhanced RBE effects in serially structured organs at risk (OARs). Clinical plan evaluation encompassed beam angles/spot position (69%), dose-averaged LET (LET) (46%), and variable RBE distributions (38%). High ratings (discrete scale: 1-5) were reported for the research functionalities using linear LET-RBE models, LET, track-end frequency and dirty dose (averages: 4.0-4.8), while LQ-based phenomenological RBE models dependent on LET scored lower for optimization (average: 2.2) but congruent for evaluation (average: 4.1). The institutions preferred LET reported as LET (94%), computed in unit-density water (56%), for all protons (63%), and lean toward LET-based phenomenological RBE models for clinical use (> 50%).
Proton institutions recognize RBE variability but adhere to a constant RBE while actively mitigating potential enhancements, particularly in serially structured OARs. Research efforts focus on planning techniques that utilize functionalities beyond a constant RBE, emphasizing standardized LET and RBE calculations to facilitate their adoption in clinical practice and improve clinical data collection. LET calculated in unit-density water for all protons as input to adaptable phenomenological RBE models was the most suggested approach, aligning with predominant clinical LET and variable RBE reporting.
尽管质子相对生物效应(RBE)取决于线性能量传递(LET)、组织特性、剂量和生物学终点等因素,但临床实践中推荐的恒定RBE值为1.1。本研究对质子治疗机构进行调查,以探索使用超出恒定质子RBE功能的活动。
RayStation的研究版本集成了考虑可变质子RBE、LET、质子径迹末端和脏剂量的功能。对欧洲和美国19家具备这些功能的机构进行了一项调查,使用一份包含25个问题的在线问卷来研究临床应用和研究前景。
在回复的16家机构中(回复率84%),13家机构有临床活动。这些临床机构规定RBE = 1.1,但也采用围绕特殊射束排列的计划策略,以应对串联结构的危险器官(OAR)中潜在增强的RBE效应。临床计划评估包括射束角度/光斑位置(69%)、剂量平均LET(LET)(46%)和可变RBE分布(38%)。对于使用线性LET - RBE模型、LET、径迹末端频率和脏剂量的研究功能,报告的评分较高(离散量表:1 - 5)(平均值:4.0 - 4.8),而依赖LET的基于LQ的唯象RBE模型在优化方面得分较低(平均值:2.2),但在评估方面得分相当(平均值:4.1)。这些机构更喜欢将LET报告为LET(94%),在单位密度水中计算(56%),针对所有质子(63%),并且在临床使用中倾向于基于LET的唯象RBE模型(> 50%)。
质子治疗机构认识到RBE的变异性,但在积极减轻潜在增强效应的同时坚持恒定的RBE,特别是在串联结构的OAR中。研究工作集中在利用超出恒定RBE功能的计划技术上,强调标准化的LET和RBE计算,以促进其在临床实践中的应用并改善临床数据收集。将所有质子在单位密度水中计算的LET作为可适应的唯象RBE模型的输入是最受推荐的方法,这与主要的临床LET和可变RBE报告一致。