Hule Umesh, Rathnarajan Sundar, Pillai Radhakrishna G, Gettu Ravindra, Santhanam Manu
Indian Institute of Technology Madras, Chennai, India.
Data Brief. 2024 Oct 9;57:111006. doi: 10.1016/j.dib.2024.111006. eCollection 2024 Dec.
The adoption of supplementary cementitious materials (SCMs) as a partial replacement of Ordinary Portland Cement (OPC) is increasing in anticipation of reducing the carbon footprint of cement and concrete industry. The resistance of concretes with SCMs against natural carbonation (a reactive-diffusion mechanism) is still a topic of research. Most literature adopt accelerated carbonation tests (under constant humidity and temperature conditions) to estimate the natural carbonation depth (d) in concrete. This does not always represent the actual scenario in the field structures. Moreover, accelerated carbonation conditions could result in significantly different pore structure than that are formed in the case of natural carbonation; hence, not always reliable to model the service life. Hence, there is a need for data on long-term natural d to help design reinforced concrete for a target service life. The data presented in this paper contains long-term natural d data of 45 different concretes prepared using various SCMs like volcanic ash (from Greece), fly ash, slag, and limestone (from France). The concrete specimens were prepared in France, shipped to India by air (in moist burlap and plastic cover), and then kept in sheltered and unsheltered exposure conditions on the terrace of a building in Chennai, India, experiencing tropical climate (warm and humid conditions). The data includes mixture proportions (type of binder, water-to-binder ratio, binder content, % SCMs, fine and coarse aggregate (river sand and gravel) content, and air content). In addition, curing time and compressive strength of concrete mixes are provided in Set A. Sets B and C consist of the natural d of concrete measured at various time instances between 1 and 11 years of natural exposure. Arguably, this is the first of its kind natural d database from a tropical climate zone. The natural d values were measured using a phenolphthalein indicator prepared according to RILEM CPC 18. This data can be used by researchers and practitioners to calibrate the existing carbonation models or to develop new models to estimate natural d for concretes exposed to tropical climates. Such models can help design concretes to achieve the target corrosion-free service life for reinforced concrete systems.
为了减少水泥和混凝土行业的碳足迹,使用补充胶凝材料(SCMs)部分替代普通硅酸盐水泥(OPC)的情况日益增多。含有SCMs的混凝土抵抗自然碳化(一种反应扩散机制)的能力仍是一个研究课题。大多数文献采用加速碳化试验(在恒定湿度和温度条件下)来估算混凝土中的自然碳化深度(d)。这并不总能代表现场结构的实际情况。此外,加速碳化条件可能导致形成与自然碳化情况下显著不同的孔隙结构;因此,用于模拟使用寿命并不总是可靠的。因此,需要长期自然碳化深度的数据来帮助设计具有目标使用寿命的钢筋混凝土。本文提供的数据包含了45种不同混凝土的长期自然碳化深度数据,这些混凝土是使用各种SCMs制备的,如火山灰(来自希腊)、粉煤灰、矿渣和石灰石(来自法国)。混凝土试件在法国制备,通过空运(用潮湿的粗麻布和塑料覆盖)运往印度,然后存放在印度钦奈一座建筑物露台上的遮蔽和无遮蔽暴露条件下,该地区为热带气候(温暖潮湿)。数据包括配合比(胶凝材料类型、水胶比、胶凝材料含量、SCMs百分比、细骨料和粗骨料(河砂和砾石)含量以及含气量)。此外,在A组中提供了混凝土混合料的养护时间和抗压强度。B组和C组包含在自然暴露1至11年期间不同时间点测量的混凝土自然碳化深度。可以说,这是来自热带气候区的同类首个自然碳化深度数据库。自然碳化深度值是使用根据RILEM CPC 18制备的酚酞指示剂测量的。研究人员和从业人员可以使用这些数据来校准现有的碳化模型或开发新模型,以估算暴露于热带气候下的混凝土的自然碳化深度。此类模型有助于设计混凝土,以实现钢筋混凝土系统的目标无腐蚀使用寿命。