Suppr超能文献

通过烯烃与硝基(杂)芳烃的氧化裂解实现光诱导的巴托利吲哚合成

Photoinduced Bartoli Indole Synthesis by the Oxidative Cleavage of Alkenes with Nitro(hetero)arenes.

作者信息

Qin Hongyun, Liu Ruihua, Wang Zemin, Xu Feng, Li Xiaowei, Shi Cong, Chen Jiashu, Shan Wenlong, Liu Chao, Xing Pan, Zhu Jiqiang, Li Xiangqian, Shi Dayong

机构信息

State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, P. R. China.

The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2025 Jan 27;64(5):e202416923. doi: 10.1002/anie.202416923. Epub 2024 Nov 18.

Abstract

Given the unique charm of dipole chemistry, intercepting N-O=C dipoles precisely generated by designed processes to develop novel reactivity has become a seminal challenge. The polar fragmentation of 1,3,2-dioxazolidine species generated through the radical addition of excited nitro(hetero)arenes to alkenes represents a significantly underappreciated mechanism for generating N-O=C dipoles. Herein, we present a photoinduced Bartoli indole synthesis by the oxidative cleavage of alkenes with nitro(hetero)arenes. Various indoles and azaindoles are constructed through the multi-step spontaneous rearrangement of carbonyl imine intermediates generated by the polar fragmentation of 1,3,2-dioxazolidine species. Mechanism studies and DFT calculations support that the reaction involves radical cycloaddition, ozonolysis-type cycloreversion, intramolecular H-shift of carbonyl imines, and 3,3-sigmatropic shift of O-Alkenyl hydroxylamines, etc. The implementation of continuous- flow photochemistry, in particular, significantly enhances efficiency, thereby overcoming obstacles to the commercialization process.

摘要

鉴于偶极化学的独特魅力,精确拦截通过设计过程精确生成的N-O=C偶极以开发新的反应性已成为一项重大挑战。通过激发的硝基(杂)芳烃与烯烃的自由基加成生成的1,3,2-二恶唑烷物种的极性裂解是一种尚未得到充分认识的生成N-O=C偶极的机制。在此,我们报道了一种通过硝基(杂)芳烃对烯烃的氧化裂解进行的光诱导巴托利吲哚合成。通过1,3,2-二恶唑烷物种的极性裂解产生的羰基亚胺中间体的多步自发重排构建了各种吲哚和氮杂吲哚。机理研究和密度泛函理论计算支持该反应涉及自由基环加成、臭氧分解型环化逆转、羰基亚胺的分子内H迁移以及O-烯基羟胺的3,3-σ迁移等。特别是连续流光化学的实施显著提高了效率,从而克服了商业化过程中的障碍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验