Schwennesen Hannah T, Li Zhen, Hammill Bradley G, Clark Amy G, Pokorney Sean, Hytopoulos Evangelos, Turakhia Mintu P, Cambra Justin, Piccini Jonathan P
Cardiac Electrophysiology Section, Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.
Department of Population Health Sciences, Duke University, Durham, North Carolina, USA.
JACC Adv. 2024 Oct 18;3(11):101340. doi: 10.1016/j.jacadv.2024.101340. eCollection 2024 Nov.
Despite clear associations between arrhythmia burden and cardiovascular risk, clinical risk scores that predict cardiovascular events do not incorporate individual-level arrhythmia characteristics from long-term continuous monitoring (LTCM).
This study evaluated the performance of risk models that use data from LTCM and patient claims for prediction of heart failure (HF) and ischemic stroke.
We retrospectively analyzed features extracted from up to 14 days of LTCM electrocardiogram (ECG) data linked to patient-level claims data for 320,974 Medicare beneficiaries who underwent ZioXT ambulatory monitoring. We created predictive models for HF hospitalization, stroke hospitalization, and new-onset HF within 1 year using LASSO Cox regression for variable selection among ambulatory ECG variables and components of the CHADS-VASc score.
A model that included components of the CHADS-VASc and all ambulatory ECG variables had greater discrimination for HF hospitalization (C-statistic 0.85, 95% CI: 0.84-0.86) than the CHADS-VASc (C-statistic 0.73, 95% CI: 0.72-0.74), but performed similarly to the CHADS-VASc for prediction of stroke hospitalization (C-statistic 0.75 [95% CI: 0.74-0.77] vs 0.71 [95% CI: 0.70-0.72], respectively). Atrial fibrillation was associated with greater risk in the most predictive models (HF hospitalization, HR: 1.53 [95% CI: 1.35-1.72]; stroke hospitalization, HR: 1.58 [95% CI: 1.30-1.93]), and premature ventricular couplets were associated with greater risk of HF hospitalization (HR: 1.54, 95% CI: 1.43-1.65).
The CHADS-VASc performed modestly for prediction of stroke and HF events; predictive ability improved significantly with addition of LTCM ECG covariates. The presence of atrial fibrillation and ventricular ectopy on 14-day LTCM were strongly associated with HF events.
尽管心律失常负荷与心血管风险之间存在明确关联,但预测心血管事件的临床风险评分并未纳入长期连续监测(LTCM)中的个体水平心律失常特征。
本研究评估了使用LTCM数据和患者理赔数据预测心力衰竭(HF)和缺血性卒中的风险模型的性能。
我们回顾性分析了与320,974名接受ZioXT动态监测的医疗保险受益人的患者水平理赔数据相关联的长达14天的LTCM心电图(ECG)数据中提取的特征。我们使用LASSO Cox回归在动态心电图变量和CHADS-VASc评分的组成部分中进行变量选择,创建了1年内HF住院、卒中住院和新发HF的预测模型。
一个包含CHADS-VASc组成部分和所有动态心电图变量的模型对HF住院的辨别能力(C统计量0.85,95%CI:0.84-0.86)高于CHADS-VASc(C统计量0.73,95%CI:0.72-0.74),但在预测卒中住院方面与CHADS-VASc表现相似(C统计量分别为0.75[95%CI:0.74-0.77]和0.71[95%CI:0.70-0.72])。在大多数预测模型中,心房颤动与更高风险相关(HF住院,HR:1.53[95%CI:1.35-1.72];卒中住院,HR:1.58[95%CI:1.30-1.93]),室性早搏与HF住院风险增加相关(HR:1.54,95%CI:1.43-1.65)。
CHADS-VASc在预测卒中和HF事件方面表现一般;添加LTCM心电图协变量后预测能力显著提高。14天LTCM上存在心房颤动和室性异位与HF事件密切相关。