Lou Yu, Li Jian, Yao Zhongzheng, Wu Zhenduo, Ying Huiqiang, Tan Lan, Liu Sinan, Zeng Jianrong, Yu Ruohan, Liu Hong, Wang Xun-Li, Zhu He, Lan Si
Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, China.
Adv Sci (Weinh). 2024 Dec;11(48):e2408816. doi: 10.1002/advs.202408816. Epub 2024 Nov 5.
Constructing nanostructures, such as nanopores, within metallic glasses (MGs) holds great promise for further unlocking their electrochemical capabilities. However, the MGs typically exhibit intrinsic atomic-scale isotropy, posing a significant challenge in directly fabricating anisotropic nanostructures using conventional chemical synthesis. Herein a selective leaching approach, which focuses on tailoring the uniformity of atomic ordering, is introduced to achieve pore-engineered Pd-Ni-P MG. This innovative approach significantly boosts the number of exposed active sites, thereby enhancing the electrochemical sensitivity for glucose detection. Electrochemical tests reveal that the nanoporous Pd-Ni-P MG exhibits high sensitivity (3.19 mA mm⁻¹ cm⁻) and remarkable stability (97.7% current retention after 1000 cycles). During electrochemical cycling, synchrotron X-ray pair distribution function and X-ray absorption fine structure analyses reveal that the distance between active sites decreases, enhancing electron transport efficiency, while the medium-range ordered structure of the Pd-Ni-P MG remains stable, contributing to its exceptional glucose sensing capabilities. A microglucose sensor is successfully developed by integrating the nanoporous Pd-Ni-P MG with a screen-printed electrode, demonstrating the practical applicability. This study not only offers a new avenue for the design of highly active nanoporous MGs but also sheds light on the mechanisms behind the high electrochemistry performance of MGs.
在金属玻璃(MGs)中构建纳米结构,如纳米孔,对于进一步释放其电化学能力具有巨大潜力。然而,金属玻璃通常表现出固有的原子尺度各向同性,这在使用传统化学合成方法直接制造各向异性纳米结构时构成了重大挑战。在此,引入了一种专注于调整原子有序均匀性的选择性浸出方法,以实现具有孔隙工程的Pd-Ni-P金属玻璃。这种创新方法显著增加了暴露的活性位点数量,从而提高了葡萄糖检测的电化学灵敏度。电化学测试表明,纳米多孔Pd-Ni-P金属玻璃具有高灵敏度(3.19 mA mm⁻¹ cm⁻)和出色的稳定性(1000次循环后电流保留率为97.7%)。在电化学循环过程中,同步加速器X射线对分布函数和X射线吸收精细结构分析表明,活性位点之间的距离减小,提高了电子传输效率,而Pd-Ni-P金属玻璃的中程有序结构保持稳定,这有助于其卓越的葡萄糖传感能力。通过将纳米多孔Pd-Ni-P金属玻璃与丝网印刷电极集成,成功开发了一种微型葡萄糖传感器,证明了其实际应用价值。这项研究不仅为设计高活性纳米多孔金属玻璃提供了一条新途径,还揭示了金属玻璃高电化学性能背后的机制。