Benitez-Aurioles Jose, Clegg Paul S, Alcaide-Corral Carlos J, Wimberley Catriona, Tavares Adriana A S
School of Physics & Astronomy, University of Edinburgh, Edinburgh, UK.
University of Manchester, Division of Informatics, Imaging and Data Science, Manchester, UK.
Med Phys. 2025 Feb;52(2):924-937. doi: 10.1002/mp.17499. Epub 2024 Nov 5.
Total-body positron emission tomography (PET), already well-established in the pre-clinical setting, makes it possible to study multi-parameters in biological systems as a whole, rather than focusing on single tissues analysis. Simultaneous kinetic analysis of multiple organs poses some daunting new challenges.
To explore quantifying the pharmacokinetics of Na[F]F in multiple dissimilar murine organs simultaneously in vivo with total-body PET imaging using different compartmental models for each organ and a shared cardiovascular system.
Six mice underwent a 60-min total-body PET scan following intravenous bolus injection of Na[F]F. Compartmental models were constructed for each organ (heart, lungs, liver, kidneys, and bone) using an image derived input function. Non-linear least squares fitting of a model that connects the five organs to a shared cardiovascular system was used to analyze both the first 3 min of data and the full hour. Analysis was repeated 5000 times using different initial parameter values for each duration, permitting analysis of correlations between parameters.
The models give a good qualitative account of the activity curves irrespective of the duration of the data; however, the quality of the fits to 3 min of data (average is 2.72) was generally better. Comparison of perfusion values to literature values was possible for the liver and lungs with the former (liver, 0.540 ± 0.177 mL/ml/min) being well-above expectations and the latter (lungs, 0.184 ± 0.413 mL/ml/min) in rough agreement. Correlations between microparameter values (especially affecting k) caused very noticeable problems for data modeling from both the kidneys and the femur.
The present study demonstrates an approach to performing kinetic modeling for multiple organs simultaneously with Na[F]F. The observed correlations between microparameter values remain a challenge. Nonetheless, many microparameters can be estimated reliably with a quantitative analysis of perfusion being possible for some organs.
全身正电子发射断层扫描(PET)在临床前环境中已得到充分确立,它能够对生物系统中的多个参数进行整体研究,而不是专注于单一组织分析。多个器官的同步动力学分析带来了一些艰巨的新挑战。
利用全身PET成像,通过为每个器官和共享的心血管系统使用不同的房室模型,探索在体内同时定量分析不同小鼠器官中Na[F]F的药代动力学。
六只小鼠在静脉推注Na[F]F后接受60分钟的全身PET扫描。使用图像衍生的输入函数为每个器官(心脏、肺、肝脏、肾脏和骨骼)构建房室模型。使用将五个器官连接到共享心血管系统的模型进行非线性最小二乘拟合,以分析前3分钟的数据和整个小时的数据。使用每个持续时间的不同初始参数值重复分析5000次,以便分析参数之间的相关性。
无论数据持续时间如何,模型都能对活性曲线进行良好的定性描述;然而,对3分钟数据的拟合质量(平均为2.72)通常更好。肝脏和肺的灌注值与文献值的比较是可行的,前者(肝脏,0.540±0.177 mL/ml/min)远高于预期,后者(肺,0.184±0.413 mL/ml/min)大致相符。微参数值之间的相关性(特别是影响k的相关性)给肾脏和股骨的数据建模带来了非常明显的问题。
本研究展示了一种使用Na[F]F同时对多个器官进行动力学建模的方法。观察到的微参数值之间的相关性仍然是一个挑战。尽管如此,许多微参数可以通过可靠估计,并且对某些器官进行灌注的定量分析是可行的。