Suppr超能文献

白色念珠菌分离株生物膜形成及抗菌药敏性(耐药性)评估。

Evaluation of biofilm formation and antimicrobial susceptibility (drug resistance) of Candida albicans isolates.

作者信息

Alvarez Loretta, Kumaran K Senthil, Nitha B, Sivasubramani K

机构信息

Department of Microbiology, Annamalai University, Annamalai Nagar, Chidambaram, Tamilnadu, 608002, India.

Department of Microbiology, Karur Government Medical College & Hospital, Karur, Tamilnadu, India.

出版信息

Braz J Microbiol. 2025 Mar;56(1):353-364. doi: 10.1007/s42770-024-01558-w. Epub 2024 Nov 6.

Abstract

Candida albicans comprises over 80% of isolates from all forms of human candidiasis. Biofilm formation enhances their capacity to withstand therapeutic treatments. In addition to providing protection, biofilm formation by C. albicans enhances its pathogenicity. Understanding the fundamental mechanisms underlying biofilm formation is crucial to advance our understanding and treatment of invasive Candida infections. An initial screening of 57 Candida spp. isolates using CHROMagar Candida (CHROMagar) media revealed that 46 were C. albicans. Of these, 12 isolates (33.3%) had the capacity to form biofilms. These 12 isolates were subjected to multiple biochemical and physiological tests, as well as 18 S rRNA sequencing, to confirm the presence of C. albicans. Upon analysis of their sensitivity to conventional antifungal agents, the isolates showed varying resistance to terbinafine (91.6%), voriconazole (50%), and fluconazole (42%). Among these, only CD50 showed resistance to all antifungal agents. Isolate CD50 also showed the presence of major biofilm-specific genes such as ALS3, EFG1, and BCR1, as confirmed by PCR. Exposure of CD50 to gentamicin-miconazole, a commonly prescribed drug combination to treat skin infections, resulted in elevated levels of gene expression, with ALS3 showing the highest fold increase. These observations highlight the necessity of understanding the proteins involved in biofilm formation and designing ligands with potential antifungal efficacy.

摘要

白色念珠菌占所有人类念珠菌病分离株的80%以上。生物膜形成增强了它们耐受治疗的能力。除了提供保护外,白色念珠菌形成生物膜还增强了其致病性。了解生物膜形成的基本机制对于增进我们对侵袭性念珠菌感染的理解和治疗至关重要。使用科玛嘉念珠菌(CHROMagar)培养基对57株念珠菌属分离株进行初步筛选,结果显示其中46株为白色念珠菌。在这些菌株中,有12株(33.3%)具有形成生物膜的能力。对这12株分离株进行了多项生化和生理测试以及18S rRNA测序,以确认白色念珠菌的存在。在分析它们对传统抗真菌药物的敏感性时,这些分离株对特比萘芬(91.6%)、伏立康唑(50%)和氟康唑(42%)表现出不同程度的耐药性。其中,只有CD50对所有抗真菌药物均耐药。经PCR证实,分离株CD50还存在主要的生物膜特异性基因,如ALS3、EFG1和BCR1。将CD50暴露于治疗皮肤感染常用的药物组合庆大霉素 - 咪康唑中,导致基因表达水平升高,其中ALS3的倍数增加最高。这些观察结果突出了了解参与生物膜形成的蛋白质以及设计具有潜在抗真菌功效的配体的必要性。

相似文献

1
Evaluation of biofilm formation and antimicrobial susceptibility (drug resistance) of Candida albicans isolates.
Braz J Microbiol. 2025 Mar;56(1):353-364. doi: 10.1007/s42770-024-01558-w. Epub 2024 Nov 6.
4
Molecular study of candiduria in pediatric patients in in relation to biofilm formation and fluconazole tolerance.
Diagn Microbiol Infect Dis. 2025 Oct;113(2):116943. doi: 10.1016/j.diagmicrobio.2025.116943. Epub 2025 Jun 7.
5
Epidemiology and antifungal susceptibility of fungal infections from 2018 to 2021 in Shandong, eastern China: A report from the SPARSS program.
Indian J Med Microbiol. 2024 Jan-Feb;47:100518. doi: 10.1016/j.ijmmb.2023.100518. Epub 2023 Dec 5.
6
Synergistic antifungal effect of thiophene derivative as an inhibitor of fluconazole-resistant Candida spp. biofilms.
Braz J Microbiol. 2024 Dec;55(4):3667-3677. doi: 10.1007/s42770-024-01470-3. Epub 2024 Aug 7.
7
Antifungal susceptibility and biofilm production of Candida species- causative agents of female genital tract infections.
Braz J Microbiol. 2024 Dec;55(4):3863-3872. doi: 10.1007/s42770-024-01529-1. Epub 2024 Oct 1.

引用本文的文献

2
Retinoids as Alternative Antifungal Agents Against : and Evidence.
Microorganisms. 2025 Jan 22;13(2):237. doi: 10.3390/microorganisms13020237.

本文引用的文献

1
Biofilm Formation in Medically Important Species.
J Fungi (Basel). 2023 Sep 22;9(10):955. doi: 10.3390/jof9100955.
2
Augmenting Azoles with Drug Synergy to Expand the Antifungal Toolbox.
Pharmaceuticals (Basel). 2022 Apr 14;15(4):482. doi: 10.3390/ph15040482.
3
Recent Advances and Opportunities in the Study of Polymicrobial Biofilms.
Front Cell Infect Microbiol. 2022 Feb 18;12:836379. doi: 10.3389/fcimb.2022.836379. eCollection 2022.
4
and Candidiasis-Opportunism Versus Pathogenicity: A Review of the Virulence Traits.
Microorganisms. 2020 Jun 6;8(6):857. doi: 10.3390/microorganisms8060857.
5
Antibiotics versus biofilm: an emerging battleground in microbial communities.
Antimicrob Resist Infect Control. 2019 May 16;8:76. doi: 10.1186/s13756-019-0533-3. eCollection 2019.
6
Circuit diversification in a biofilm regulatory network.
PLoS Pathog. 2019 May 22;15(5):e1007787. doi: 10.1371/journal.ppat.1007787. eCollection 2019 May.
7
MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549. doi: 10.1093/molbev/msy096.
8
Biofilms: Threats, Challenges, and Promising Strategies.
Front Med (Lausanne). 2018 Feb 13;5:28. doi: 10.3389/fmed.2018.00028. eCollection 2018.
9
Development and regulation of single- and multi-species Candida albicans biofilms.
Nat Rev Microbiol. 2018 Jan;16(1):19-31. doi: 10.1038/nrmicro.2017.107. Epub 2017 Oct 3.
10
Auxanographic Carbohydrate Assimilation Method for Large Scale Yeast Identification.
J Clin Diagn Res. 2017 Apr;11(4):DC01-DC03. doi: 10.7860/JCDR/2017/25967.9653. Epub 2017 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验