Peng Fangfang, Zhang Bin, Zhao Runyao, Liu Shiqiang, Wu Yuxuan, Xu Shaojun, Keenan Luke L, Liu Huizhen, Qian Qingli, Wu Tianbin, Yang Haijun, Liu Zhimin, Li Jikun, Chen Bingfeng, Kang Xinchen, Han Buxing
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 101408 P. R. China.
Chem Sci. 2024 Oct 28;15(46):19283-9. doi: 10.1039/d4sc05751a.
Selective hydrogenolysis of biomass-derived furanic compounds is a promising approach for synthesizing aliphatic polyols by opening the furan ring. However, there remains a significant need for highly efficient catalysts that selectively target the Csp-O bond in the furan ring, as well as for a deeper understanding of the fundamental atomistic mechanisms behind these reactions. In this study, we present the use of Pt-Fe bimetallic catalysts supported on layered double hydroxides [PtFe /LDH] for the hydrogenolysis of furanic compounds into aliphatic alcohols, achieving over 90% selectivity toward diols and triols. Our findings reveal that the synergy between Pt nanoparticles, atomically dispersed Pt sites and the support facilitates the formation of hydride-proton pair at the Pt ⋯O Lewis acid-base unit of PtFe /LDH through hydrogen spillover. The hydride specifically targets the Csp-O bond in the furan ring, initiating an S2 reaction and ring cleavage. Moreover, the presence of Fe improves the yield of desired alcohols by inhibiting the adsorption of vinyl groups, thereby suppressing the hydrogenation of the furan ring.
生物质衍生呋喃类化合物的选择性氢解是通过打开呋喃环合成脂肪族多元醇的一种有前景的方法。然而,仍然迫切需要能够选择性靶向呋喃环中Csp-O键的高效催化剂,以及更深入地了解这些反应背后的基本原子机理。在本研究中,我们展示了使用负载在层状双氢氧化物上的Pt-Fe双金属催化剂[PtFe/LDH]将呋喃类化合物氢解为脂肪族醇,对二醇和三醇的选择性超过90%。我们的研究结果表明,Pt纳米颗粒、原子分散的Pt位点与载体之间的协同作用通过氢溢流促进了PtFe/LDH的Pt⋯O路易斯酸碱单元处氢化物-质子对的形成。氢化物特异性靶向呋喃环中的Csp-O键,引发S2反应并使环裂解。此外,Fe的存在通过抑制乙烯基的吸附提高了所需醇的产率,从而抑制了呋喃环的氢化。