Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205.
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110.
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2405020121. doi: 10.1073/pnas.2405020121. Epub 2024 Nov 6.
Skeletal muscle actin (ACTA1) mutations are a prevalent cause of skeletal myopathies consistent with ACTA1's high expression in skeletal muscle. Rare de novo mutations in ACTA1 associated with combined cardiac and skeletal myopathies have been reported, but ACTA1 represents only ~20% of the total actin pool in cardiomyocytes, making its role in cardiomyopathy controversial. Here we demonstrate how a mutation in an actin isoform expressed at low levels in cardiomyocytes can cause cardiomyopathy by focusing on a unique ACTA1 variant, R256H. We previously identified this variant in a family with dilated cardiomyopathy, who had reduced systolic function without clinical skeletal myopathy. Using a battery of multiscale biophysical tools, we show that R256H has potent effects on ACTA1 function at the molecular scale and in human cardiomyocytes. Importantly, we demonstrate that R256H acts in a dominant manner, where the incorporation of small amounts of mutant protein into thin filaments is sufficient to disrupt molecular contractility, and that this effect is dependent on the presence of troponin and tropomyosin. To understand the structural basis of this change in regulation, we resolved a structure of R256H filaments using cryoelectron microscopy, and we see alterations in actin's structure that have the potential to disrupt interactions with tropomyosin. Finally, we show that human-induced pluripotent stem cell cardiomyocytes demonstrate reduced contractility and sarcomeric organization. Taken together, we demonstrate that R256H has multiple effects on ACTA1 function that are sufficient to cause reduced contractility and establish a likely causative relationship between ACTA1 R256H and clinical cardiomyopathy.
骨骼肌肌动蛋白 (ACTA1) 突变是与骨骼肌高表达一致的骨骼肌肌病的常见原因。已经报道了与心脏和骨骼肌肌病相关的 ACTA1 罕见新生突变,但 ACTA1 仅占心肌细胞总肌动蛋白池的~20%,使其在心肌病中的作用存在争议。在这里,我们通过关注一种在心肌细胞中低表达的肌动蛋白异构体的突变,证明了突变如何导致心肌病。我们之前在一个扩张型心肌病的家族中发现了这种变体,该家族的收缩功能降低,而没有临床骨骼肌肌病。我们使用一系列多尺度生物物理工具,表明 R256H 在分子水平和人类心肌细胞中对 ACTA1 功能具有强大的影响。重要的是,我们证明 R256H 以显性方式起作用,少量突变蛋白掺入细肌丝足以破坏分子收缩性,并且这种效应依赖于肌钙蛋白和原肌球蛋白的存在。为了了解这种调节变化的结构基础,我们使用冷冻电子显微镜解析了 R256H 细丝的结构,我们看到肌动蛋白结构的改变有可能破坏与原肌球蛋白的相互作用。最后,我们表明人类诱导多能干细胞心肌细胞表现出收缩性降低和肌节组织异常。总之,我们证明 R256H 对 ACTA1 功能有多种影响,足以导致收缩性降低,并确立了 ACTA1 R256H 与临床心肌病之间的可能因果关系。