di Falco Camille, Aissaoui Rachid, Hagemeister Nicola
Laboratoire d'Innovation Ouverte en technologies de la santé (LIO-ÉTS), Centre de Recherche du Centre Hospitalier de l'université de Montréal (CRCHUM), 900 St-Denis, Montréal, QC H2X 0A9, Canada; École de Technologie Supérieure, Département de génie des systèmes, 1100 rue Notre-Dame Ouest, Montréal, QC H21 2W5, Canada.
Gait Posture. 2025 Jan;115:51-58. doi: 10.1016/j.gaitpost.2024.10.021. Epub 2024 Oct 29.
Inertial systems are increasingly used to analyze human motion, especially for gait analyses and in clinical settings. Calibration methods for these systems are designed for ease of implementation, and previous studies have shown that they can provide accurate knee kinematics in the sagittal plane. However, the reason of their lack of accuracy in the other planes (i.e., transverse and frontal) remain unknown.
This study aimed to evaluate the sensitivity of one posture of a double-pose calibration method to analyse 3D knee kinematics during gait with two magnetic inertial measurement units (MIMU). This method consists of a standing posture and a posture with the leg stretched forward in the sagittal plane, which together define the sagittal plane. Our hypothesis was that a change in the definition of the sagittal plane during the calibration process was likely to affect the assessment of knee kinematics in the frontal and transverse planes.
Ten healthy participants wearing the KneeKG system and two MIMU completed the calibration process in five different leg positions (0°, 3°, 5°, 10° or 15° from the sagittal plane) for the second calibration posture. After static calibration, the participants walked on an instrumented treadmill at a speed of 1.1 m/s and 3D knee kinematics were calculated using the five different calibration conditions.
Mean absolute difference (MAD) between the swing-phase peak value of the curve corresponding to the leg in the sagittal plane (0° shift from this plane) when performing the second calibration posture and each of the other curves was 0.20-0.46° for knee flexion, 1.67-2.90° for adduction, and 0.72-1.46° for external rotation. MAD of the swing-phase peak value in the frontal plane was correlated (R=0.81) with the angulation of the femur in the sagittal plane during calibration.
An angular shift from the sagittal plane when performing a double-pose calibration method induces a minimal influence on the knee flexion/extension but larger influences on secondary knee motions.
惯性系统越来越多地用于分析人体运动,尤其是在步态分析和临床环境中。这些系统的校准方法旨在易于实施,先前的研究表明它们可以在矢状面提供准确的膝关节运动学数据。然而,它们在其他平面(即横断面和额状面)缺乏准确性的原因仍然未知。
本研究旨在评估双姿势校准方法的一种姿势对使用两个磁惯性测量单元(MIMU)分析步态期间三维膝关节运动学的敏感性。该方法包括一个站立姿势和一个在矢状面中腿部向前伸展的姿势,它们共同定义了矢状面。我们的假设是,校准过程中矢状面定义的变化可能会影响额状面和横断面中膝关节运动学的评估。
十名佩戴KneeKG系统和两个MIMU的健康参与者在第二个校准姿势的五个不同腿部位置(与矢状面成0°、3°、5°、10°或15°)完成校准过程。静态校准后,参与者以1.1 m/s的速度在装有仪器的跑步机上行走,并使用五种不同的校准条件计算三维膝关节运动学数据。
在执行第二个校准姿势时,矢状面中腿部曲线(与该平面偏移0°)的摆动期峰值与其他每条曲线之间的平均绝对差(MAD),膝关节屈曲为0.20 - 0.46°,内收为1.67 - 2.90°,外旋为0.72 - 1.46°。额状面摆动期峰值的MAD与校准期间矢状面中股骨的角度相关(R = 0.81)。
执行双姿势校准方法时与矢状面的角度偏移对膝关节屈伸的影响最小,但对膝关节的次要运动影响较大。