Suppr超能文献

利用反胶束研究膜蛋白的进展。

Advances in utilizing reverse micelles to investigate membrane proteins.

作者信息

Walters Sara H, Birchfield Aaron S, Fuglestad Brian

机构信息

Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, U.S.A.

Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, U.S.A.

出版信息

Biochem Soc Trans. 2024 Dec 19;52(6):2499-2511. doi: 10.1042/BST20240830.

Abstract

Reverse micelles (RMs) have emerged as useful tools for the study of membrane associated proteins. With a nanoscale water core surrounded by surfactant and solubilized in a non-polar solvent, RMs stand apart as a unique membrane model. While RMs have been utilized as tools to investigate the physical properties of membranes and their associated water, RMs also effectively house membrane associated proteins for a variety of studies. High-resolution protein NMR revealed a need for development of improved RM formulations, which greatly enhanced the use of RMs for aqueous proteins. Protein-optimized RM formulations enabled encapsulation of challenging membrane associated protein types, including lipidated proteins, transmembrane proteins, and peripheral membrane proteins. Improvements in biological accuracy of RMs using phospholipid-based surfactants has advanced their utility as a membrane mimetic even further, better matching the chemistry of the most common cellular membrane lipids. Natural lipid extracts may also be used to construct RMs and house proteins, resulting in a membrane model that better represents the complexity of biological membranes. Recent applications in high-resolution investigations of protein-membrane interactions and inhibitor design of membrane associated proteins have demonstrated the usefulness of these systems in addressing this difficult category of protein. Further developments of RMs as membrane models will enhance the breadth of investigations facilitated by these systems and will enhance their use in biophysical, structural, and drug discovery pursuits of membrane associated proteins. In this review, we present the development of RMs as membrane models and their application to structural and biophysical study of membrane proteins.

摘要

反胶束(RMs)已成为研究膜相关蛋白的有用工具。反胶束具有被表面活性剂包围并溶解在非极性溶剂中的纳米级水核,作为一种独特的膜模型脱颖而出。虽然反胶束已被用作研究膜及其相关水的物理性质的工具,但反胶束也能有效地容纳膜相关蛋白以进行各种研究。高分辨率蛋白质核磁共振揭示了开发改进的反胶束制剂的必要性,这极大地增强了反胶束在水性蛋白质研究中的应用。蛋白质优化的反胶束制剂能够封装具有挑战性的膜相关蛋白类型,包括脂化蛋白、跨膜蛋白和外周膜蛋白。使用基于磷脂的表面活性剂提高反胶束的生物学准确性,进一步提升了它们作为膜模拟物的效用,使其更符合最常见细胞膜脂质的化学性质。天然脂质提取物也可用于构建反胶束并容纳蛋白质,从而形成一个能更好地代表生物膜复杂性的膜模型。最近在蛋白质 - 膜相互作用的高分辨率研究和膜相关蛋白抑制剂设计中的应用,证明了这些系统在研究这类困难蛋白方面的有用性。反胶束作为膜模型的进一步发展将扩大这些系统所促进的研究范围,并增强它们在膜相关蛋白的生物物理、结构和药物发现研究中的应用。在这篇综述中,我们介绍了反胶束作为膜模型的发展及其在膜蛋白结构和生物物理研究中的应用。

相似文献

1
Advances in utilizing reverse micelles to investigate membrane proteins.
Biochem Soc Trans. 2024 Dec 19;52(6):2499-2511. doi: 10.1042/BST20240830.
3
Membrane-Mimicking Reverse Micelles for High-Resolution Interfacial Study of Proteins and Membranes.
Langmuir. 2022 Mar 29;38(12):3676-3686. doi: 10.1021/acs.langmuir.1c03085. Epub 2022 Mar 17.
4
Characterization of 10MAG/LDAO reverse micelles: Understanding versatility for protein encapsulation.
Biophys Chem. 2024 Aug;311:107269. doi: 10.1016/j.bpc.2024.107269. Epub 2024 May 21.
5
Interactions of surfactants with lipid membranes.
Q Rev Biophys. 2008 Aug-Nov;41(3-4):205-64. doi: 10.1017/S0033583508004721.
6
An NMR Approach for Investigating Membrane Protein-Lipid Interactions Using Native Reverse Micelles.
Bio Protoc. 2024 Jul 20;14(14):e5039. doi: 10.21769/BioProtoc.5039.
9
Use of reverse micelles in membrane protein structural biology.
J Biomol NMR. 2008 Mar;40(3):203-11. doi: 10.1007/s10858-008-9227-5. Epub 2008 Feb 23.
10
Beyond detergent micelles: The advantages and applications of non-micellar and lipid-based membrane mimetics for solution-state NMR.
Prog Nucl Magn Reson Spectrosc. 2019 Oct-Dec;114-115:271-283. doi: 10.1016/j.pnmrs.2019.08.001. Epub 2019 Aug 26.

引用本文的文献

本文引用的文献

1
An NMR Approach for Investigating Membrane Protein-Lipid Interactions Using Native Reverse Micelles.
Bio Protoc. 2024 Jul 20;14(14):e5039. doi: 10.21769/BioProtoc.5039.
2
Ligandability at the Membrane Interface of GPx4 Revealed through a Reverse Micelle Fragment Screening Platform.
JACS Au. 2024 Jun 26;4(7):2676-2686. doi: 10.1021/jacsau.4c00427. eCollection 2024 Jul 22.
3
Optimizing NMR fragment-based drug screening for membrane protein targets.
J Struct Biol X. 2024 May 25;9:100100. doi: 10.1016/j.yjsbx.2024.100100. eCollection 2024 Jun.
4
Characterization of 10MAG/LDAO reverse micelles: Understanding versatility for protein encapsulation.
Biophys Chem. 2024 Aug;311:107269. doi: 10.1016/j.bpc.2024.107269. Epub 2024 May 21.
6
A fine balance of hydrophobic-electrostatic communication pathways in a pH-switching protein.
Proc Natl Acad Sci U S A. 2022 Jun 28;119(26):e2119686119. doi: 10.1073/pnas.2119686119. Epub 2022 Jun 22.
7
Membrane-Mimicking Reverse Micelles for High-Resolution Interfacial Study of Proteins and Membranes.
Langmuir. 2022 Mar 29;38(12):3676-3686. doi: 10.1021/acs.langmuir.1c03085. Epub 2022 Mar 17.
8
Structural transition of reverse cylindrical micelles to reverse vesicles by mixtures of lecithin and inorganic salts.
J Colloid Interface Sci. 2022 Jun;615:768-777. doi: 10.1016/j.jcis.2022.02.015. Epub 2022 Feb 7.
9
Lipid Membrane Mimetics in Functional and Structural Studies of Integral Membrane Proteins.
Membranes (Basel). 2021 Sep 3;11(9):685. doi: 10.3390/membranes11090685.
10
Protein conformational entropy is not slaved to water.
Sci Rep. 2020 Oct 16;10(1):17587. doi: 10.1038/s41598-020-74382-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验