Li Benhui, Wang Mengdi, Ao Shuyu, Lyu Kuan, Su Xuzhong, Sun Fengxin
Laboratory of Soft Fibrous Materials and Physics, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China.
MOE Key Laboratory of Special Protection Textiles, Jiangnan University, Wuxi 214122, China.
Mater Horiz. 2025 Jan 20;12(2):642-653. doi: 10.1039/d4mh01015a.
Smart textiles with thermal and moisture management functionalities are highly desirable for enhancing human comfort and reducing weather-related health issues. However, achieving high-performance thermoregulatory fabrics that simultaneously exhibit reversible cooling and heating functions, and effective sweat management through industrial fabrication, remains challenging due to the lack of compatible textile technologies capable of manipulating hierarchical structures. Herein, a robust thermal and moisture-managing metafabric (TMM fabric) with a stitching-interlaced-knit structure is developed using industrialized machine knit technology. Unlike layered fabrics, this knitted structure endows the TMM fabric with different appearances on its two opposite surfaces for reversible photon management, while integrating these surfaces into an all-in-one construction using interlacing yarns. The interlacing yarns also serve as pathways for heat and moisture transmission, enhancing thermal conduction and water transportation. A coupling agent-assisted zinc oxide nanoprocessing is further applied to the cooling surface of the TMM fabric to improve solar reflectivity. The bifacial TMM fabric demonstrates on-demand radiative/evaporation cooling and photo-thermal heating capacities by simply flipping the fabric, achieving an effective temperature regulation of over 17 °C. Furthermore, the TMM fabric shows desirable electro-thermal performance, enabling it to protect the human body from harsh low-temperature conditions of -18 °C. Moreover, the TMM fabric demonstrates good breathability and robust mechanical properties. This facile structural design as a paradigm provides a new insight for producing scalable, robust and efficient personal thermoregulation textiles adaptive to superwide temperature changes using well-engineered textile structures.
具有热湿管理功能的智能纺织品对于提高人体舒适度和减少与天气相关的健康问题非常理想。然而,由于缺乏能够操控分级结构的兼容纺织技术,通过工业制造实现同时具有可逆冷却和加热功能以及有效汗液管理的高性能温度调节织物仍然具有挑战性。在此,采用工业化针织技术开发了一种具有缝合交织针织结构的坚固热湿管理超织物(TMM织物)。与层状织物不同,这种针织结构使TMM织物在其两个相对表面上具有不同外观以实现可逆光子管理,同时使用交织纱线将这些表面整合为一体结构。交织纱线还充当热量和水分传输的通道,增强热传导和水传输。一种偶联剂辅助的氧化锌纳米处理进一步应用于TMM织物的冷却表面以提高太阳反射率。这种双面TMM织物通过简单地翻转织物展示按需辐射/蒸发冷却和光热加热能力,实现超过17°C的有效温度调节。此外,TMM织物显示出理想的电热性能,使其能够保护人体免受-18°C的恶劣低温条件影响。而且,TMM织物表现出良好的透气性和强大的机械性能。这种简便的结构设计作为一种范例,为使用精心设计的纺织结构生产适应超宽温度变化的可扩展、坚固且高效的个人温度调节纺织品提供了新的见解。