用于气道生理特性原位监测的感觉人工纤毛。

Sensory artificial cilia for in situ monitoring of airway physiological properties.

机构信息

Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212.

Vanderbilt Institute for Surgery and Engineering, Vanderbilt University, Nashville, TN 37212.

出版信息

Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2412086121. doi: 10.1073/pnas.2412086121. Epub 2024 Nov 7.

Abstract

Continuously monitoring human airway conditions is crucial for timely interventions, especially when airway stents are implanted to alleviate central airway obstruction in lung cancer and other diseases. Mucus conditions, in particular, are important biomarkers for indicating inflammation and stent patency but remain challenging to monitor. Current methods, reliant on computational tomography imaging and bronchoscope inspection, pose risks due to radiation and lack the ability to provide continuous real-time feedback outside of hospitals. Inspired by the sensing ability of biological cilia, we report wireless sensing mechanisms in sensory artificial cilia for detecting mucus conditions, including viscosity and layer thickness, which are crucial biomarkers for disease severity. The sensing mechanism for mucus viscosity leverages external magnetic fields to actuate a magnetic artificial cilium and sense its shape using a flexible strain-gauge. Additionally, we report an artificial cilium with capacitance sensing for mucus layer thickness, offering unique self-calibration, adjustable sensitivity, and range, all enabled by external magnetic fields. To enable prolonged and wireless data access, we integrate Bluetooth Low Energy communication and onboard power, along with a wearable magnetic actuation system for sensor activation. We validate our method by deploying the sensor independently or in conjunction with an airway stent within a trachea phantom and sheep trachea ex vivo. The proposed sensing mechanisms and devices pave the way for real-time monitoring of mucus conditions, facilitating early disease detection and providing stent patency alerts, thereby allowing timely interventions and personalized care.

摘要

持续监测人体气道状况对于及时干预至关重要,特别是在植入气道支架以缓解肺癌和其他疾病导致的中央气道阻塞时。黏液状况是指示炎症和支架通畅性的重要生物标志物,但监测仍然具有挑战性。目前的方法依赖于计算机断层扫描成像和支气管镜检查,由于辐射的风险以及无法在医院外提供连续实时反馈,因此存在局限性。受生物纤毛传感能力的启发,我们报告了用于检测黏液状况(包括黏度和层厚度)的传感机制,这些状况是疾病严重程度的关键生物标志物。黏液黏度的传感机制利用外部磁场来驱动磁性人工纤毛,并使用柔性应变计来感知其形状。此外,我们还报告了一种具有电容传感功能的人工纤毛,用于测量黏液层厚度,其独特的自校准、可调灵敏度和范围均由外部磁场实现。为了实现长时间的无线数据访问,我们整合了蓝牙低能通信和板载电源,并结合了可穿戴的磁驱动系统,用于传感器的激活。我们通过在气管模型和绵羊气管的离体模型中独立或联合气道支架部署传感器来验证我们的方法。所提出的传感机制和设备为实时监测黏液状况铺平了道路,有助于早期疾病检测并提供支架通畅性警报,从而实现及时干预和个性化护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/292d/11573673/94cca82c8432/pnas.2412086121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索