Amit Gal, Vagerman Roy, Revayev Oran
Dosimetry Section, Soreq Nuclear Research Center, Yavne 8180000, Israel.
Systems Development Division, Soreq Nuclear Research Center, Yavne 8180000, Israel.
Sensors (Basel). 2024 Oct 28;24(21):6904. doi: 10.3390/s24216904.
This research reviews a novel artificial intelligence (AI)-based application called TLDetect, which filters and classifies anomalous glow curves (GCs) of thermoluminescent dosimeters (TLDs). Until recently, GC review and correction in the lab were performed using an old in-house software, which uses the Microsoft Access database and allows the laboratory technician to manually review and correct almost all GCs without any filtering. The newly developed application TLDetect uses a modern SQL database and filters out only the necessary GCs for technician review. TLDetect first uses an artificial neural network (ANN) model to filter out all regular GCs. Afterwards, it automatically classifies the rest of the GCs into five different anomaly classes. These five classes are defined by the typical patterns of GCs, i.e., high noise at either low or high temperature channels, untypical GC width (either wide or narrow), shifted GCs whether to the low or to the high temperatures, spikes, and a last class that contains all other unclassified anomalies. By this automatic filtering and classification, the algorithm substantially reduces the amount of the technician's time spent reviewing the GCs and makes the external dosimetry laboratory dose assessment process more repeatable, more accurate, and faster. Moreover, a database of the class anomalies distribution over time of GCs is saved along with all their relevant statistics, which can later assist with preliminary diagnosis of TLD reader hardware issues.
本研究回顾了一种名为TLDetect的基于人工智能(AI)的新型应用程序,该程序可对热释光剂量计(TLD)的异常发光曲线(GC)进行过滤和分类。直到最近,实验室中GC的审查和校正都是使用一个旧的内部软件进行的,该软件使用Microsoft Access数据库,允许实验室技术人员手动审查和校正几乎所有的GC,而无需任何过滤。新开发的应用程序TLDetect使用现代SQL数据库,只筛选出需要技术人员审查的GC。TLDetect首先使用人工神经网络(ANN)模型过滤掉所有正常的GC。然后,它会自动将其余的GC分类为五个不同的异常类别。这五个类别是由GC的典型模式定义的,即低温或高温通道处的高噪声、非典型的GC宽度(宽或窄)、向低温或高温方向偏移的GC、尖峰,以及最后一个包含所有其他未分类异常的类别。通过这种自动过滤和分类,该算法大大减少了技术人员审查GC所花费的时间,并使外部剂量测定实验室的剂量评估过程更具可重复性、更准确且更快。此外,还保存了一个关于GC随时间的类别异常分布的数据库及其所有相关统计信息,这随后可协助初步诊断TLD读取器硬件问题。