Shimoni-Sebag Ariel, Abramovich Ifat, Agranovich Bella, Massri Rami, Stossel Chani, Atias Dikla, Raites-Gurevich Maria, Yizhak Keren, Golan Talia, Gottlieb Eyal, Lawrence Yaacov Richard
The Benjamin Davidai Department of Radiation Oncology, Sheba Medical Center, Derech Sheba 2, Ramat Gan 5265601, Israel.
Faculty of Medicine, Technion Institute, Efron St. 1, Haifa 3525433, Israel.
Radiother Oncol. 2025 Jan;202:110606. doi: 10.1016/j.radonc.2024.110606. Epub 2024 Nov 8.
Pancreatic ductal adenocarcinoma (PDAC) is remarkably resistant to standard modalities, including radiotherapy. We hypothesized that metabolic reprogramming may underlie PDAC radioresistance, and moreover, that it would be possible to exploit these metabolic changes for therapeutic intent.
We established two matched models of radioresistant PDAC cells by exposing the AsPC-1 and MIAPaCa-2 human pancreatic cancer cells to incremental doses of radiation. The metabolic profile of parental and radioresistant cells was investigated using Nanostring technology, labeled-glucose tracing by liquid chromatography-mass spectrometry, Seahorse analysis and exposure to metabolic inhibitors. The synergistic effect of radiation combined with a pentose-phosphate pathway inhibitor, 6-aminonicotinamide (6-AN) was evaluated in a xenograft model established by subcutaneous injection of radioresistant-AsPC-1 cells into nude mice.
The radioresistant cells overexpressed pyruvate dehydrogenase kinase (PDK) and consistently, displayed increased glycolysis and downregulated the tricarboxylic acid (TCA) cycle and oxidative phosphorylation. Metabolic flux through the pentose-phosphate pathway (PPP) was increased, as were levels of reduced glutathione; pharmacological inhibition of the PPP dramatically potentiated radiation-induced cell death. Furthermore, the combined treatment of radiation with the PPP inhibitor 6-AN synergistically inhibited tumor growth in-vivo.
We provide a mechanistic understanding of the metabolic changes that underlie radioresistance in PDAC. Furthermore, we demonstrate that pancreatic cancer cells can be re-sensitized to radiation via metabolic manipulation, in particular, inhibition of the PPP. Exploitation of the metabolic vulnerabilities of radioresistant pancreatic cancer cells constitutes a new approach to pancreatic cancer, with a potential to improve clinical outcomes.
胰腺导管腺癌(PDAC)对包括放疗在内的标准治疗方式具有显著抗性。我们推测代谢重编程可能是PDAC放疗抗性的基础,而且有可能利用这些代谢变化来实现治疗目的。
我们通过将AsPC-1和MIAPaCa-2人胰腺癌细胞暴露于递增剂量的辐射,建立了两个匹配的放疗抗性PDAC细胞模型。使用纳米串技术、液相色谱-质谱法进行标记葡萄糖追踪、海马分析以及暴露于代谢抑制剂来研究亲本细胞和放疗抗性细胞的代谢谱。在通过将放疗抗性AsPC-1细胞皮下注射到裸鼠体内建立的异种移植模型中,评估放疗与戊糖磷酸途径抑制剂6-氨基烟酰胺(6-AN)联合的协同效应。
放疗抗性细胞丙酮酸脱氢酶激酶(PDK)过表达,并且一致地表现出糖酵解增加、三羧酸(TCA)循环下调和氧化磷酸化减少。通过戊糖磷酸途径(PPP)的代谢通量增加,谷胱甘肽还原水平也增加;PPP的药理学抑制显著增强了辐射诱导的细胞死亡。此外,放疗与PPP抑制剂6-AN联合治疗在体内协同抑制肿瘤生长。
我们对PDAC放疗抗性背后的代谢变化提供了机制上的理解。此外,我们证明胰腺癌细胞可以通过代谢操纵,特别是抑制PPP,重新对放疗敏感。利用放疗抗性胰腺癌细胞的代谢脆弱性构成了一种新的胰腺癌治疗方法,有可能改善临床结果。