Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States of America.
PLoS Biol. 2024 Nov 12;22(11):e3002902. doi: 10.1371/journal.pbio.3002902. eCollection 2024 Nov.
The sensation of gravity anchors our perception of the environment and is important for navigation. However, the neural circuits that transform gravity into commands for navigation are undefined. We first determined that larval zebrafish (Danio rerio) navigate vertically by maintaining a consistent heading across a series of upward climb or downward dive bouts. Gravity-blind mutant fish swim with more variable heading and excessive veering, leading to less effective vertical navigation. After targeted photoablation of ascending vestibular neurons and spinal projecting midbrain neurons, but not vestibulospinal neurons, vertical navigation was impaired. These data define a sensorimotor circuit that uses evolutionarily conserved brainstem architecture to transform gravitational signals into persistent heading for vertical navigation. The work lays a foundation to understand how vestibular inputs allow animals to move effectively through their environment.
重力感锚定了我们对环境的感知,对导航很重要。然而,将重力转化为导航指令的神经回路尚不清楚。我们首先确定,幼虫斑马鱼(Danio rerio)通过在一系列向上攀爬或向下俯冲的过程中保持一致的头部方向来垂直导航。而在重力盲突变体鱼中,它们的游动方向更加多变,并且过度转向,导致垂直导航效果较差。靶向光解消融前庭神经元和投射到中脑的脊髓神经元,但不消融前庭脊髓神经元后,垂直导航受到损害。这些数据定义了一个感觉运动回路,它利用进化保守的脑干结构将重力信号转化为持久的头部方向,用于垂直导航。这项工作为理解前庭输入如何使动物有效地在其环境中移动奠定了基础。