Lynn Kendra J, Downs Drew T, Trusdell Frank A, Wieser Penny E, Rangel Berenise, McDade Baylee, Hotovec-Ellis Alicia J, Bennington Ninfa, Anderson Kyle R, Ruth Dawn C S, DeVitre Charlotte L, Ellis Andria P, Nadeau Patricia A, Clor Laura, Kelly Peter, Dotray Peter J, Chang Jefferson C
U.S. Geological Survey, Hawaiian Volcano Observatory, Hilo, HI, USA.
Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA.
Nat Commun. 2024 Nov 12;15(1):9451. doi: 10.1038/s41467-024-52881-7.
Distinguishing periods of intermittent unrest from the run-up to eruption is a major challenge at volcanoes around the globe. Comparing multidisciplinary monitoring data with mineral chemistry that records the physical and spatio-temporal evolution of magmas fundamentally advances our ability to forecast eruptions. The recent eruption of Mauna Loa, Earth's largest active volcano, provides a unique opportunity to differentiate unrest from run-up and improve forecasting of future eruptions. After decades of intermittent seismic and geodetic activity over 38 years of repose, Mauna Loa began erupting on 27 November 2022. Here we present a multidisciplinary synthesis that tracks the spatio-temporal evolution of precursory activity by integrating mineral and melt chemistry, fluid inclusion barometry, numerical modeling of mineral zoning, syn-eruptive gas plume measurements, the distribution and frequency of earthquake hypocenters, seismic velocity changes, and ground deformation. These diverse data indicate that the eruption occurred following a 2-month period of sustained magma intrusion from depths of 3-5 km up to 1-2 km beneath the summit caldera, providing a new model of the plumbing system at this very high threat volcano. Careful correlation of both the geochemistry and instrumental monitoring data improves our ability to distinguish unrest from the run-up to eruption by providing deeper understanding of the both the monitoring data and the magmatic system-an approach that could be applied at other volcanic systems worldwide.
区分间歇性动荡期与火山喷发前奏是全球火山面临的一项重大挑战。将多学科监测数据与记录岩浆物理及时空演化的矿物化学数据进行对比,从根本上提升了我们预测火山喷发的能力。地球上最大的活火山莫纳罗亚火山最近的喷发,为区分动荡期与喷发前奏以及改进对未来火山喷发的预测提供了一个独特契机。在经历了38年静止期内数十年的间歇性地震和大地测量活动后,莫纳罗亚火山于2022年11月27日开始喷发。在此,我们展示了一项多学科综合研究,通过整合矿物与熔体化学、流体包裹体气压测量、矿物分带数值模拟、喷发期气体羽流测量、地震震源分布及频率、地震波速度变化和地面变形等数据,追踪前兆活动的时空演化。这些多样的数据表明,此次火山喷发是在持续两个月的岩浆从3 - 5千米深处侵入至山顶火山口下方1 - 2千米处之后发生的,这为这座极具威胁的火山的管道系统提供了一个新模型。通过对地球化学数据和仪器监测数据进行细致的关联分析,我们能更深入地理解监测数据和岩浆系统,从而提升区分动荡期与喷发前奏的能力——这种方法可应用于全球其他火山系统。