Changchun University of Chinese Medicine, Changchun, Jilin Province, China.
Jilin Provincial Academy of Chinese Medicine Sciences, Changchun, Jilin Province, China.
Medicine (Baltimore). 2024 Nov 8;103(45):e40484. doi: 10.1097/MD.0000000000040484.
Parkinson disease (PD) is a chronic neurological disorder primarily characterized by a deficiency of dopamine in the brain. In recent years, numerous studies have highlighted the substantial influence of RNA N6-methyladenosine (m6A) regulators on various biological processes. Nevertheless, the specific contribution of m6A-related genes to the development and progression of PD remains uncertain. In this study, we performed a differential analysis of the GSE8397 dataset in the Gene Expression Omnibus database and selected important m6A-related genes. Candidate m6A-related genes were then screened using a random forest model to predict the risk of PD. A nomogram model was built based on the candidate m6A-related genes. By employing a consensus clustering method, PD was divided into different m6A clusters based on the selected significant m6A-related genes. Finally, we performed immune cell infiltration analysis to explore the immune infiltration between different clusters. We performed a differential analysis of the GSE8397 dataset in the Gene Expression Omnibus database and selected 11 important m6A-related genes. Four candidate m6A-related genes (YTH Domain Containing 2, heterogeneous nuclear ribonucleoprotein C, leucine-rich pentatricopeptide repeat motif containing protein and insulin-like growth factor binding protein-3) were then screened using a random forest model to predict the risk of PD. A nomogram model was built based on the 4 candidate m6A-related genes. The decision curve analysis indicated that patients can benefit from the nomogram model. By employing a consensus clustering method, PD was divided into 2 m6A clusters (cluster A and cluster B) based on the selected significant m6A-related genes. The immune cell infiltration analysis revealed that cluster A and cluster B exhibit distinct immune phenotypes. In conclusion, m6A-related genes play a significant role in the development of PD and our study on m6A clustering may potentially guide personalized treatment strategies for PD in the future.
帕金森病(PD)是一种慢性神经系统疾病,主要特征是大脑中多巴胺的缺乏。近年来,许多研究强调了 RNA N6-甲基腺苷(m6A)调节剂对各种生物过程的重要影响。然而,m6A 相关基因对 PD 的发展和进展的具体贡献仍不确定。在这项研究中,我们对基因表达综合数据库中的 GSE8397 数据集进行了差异分析,选择了重要的 m6A 相关基因。然后,使用随机森林模型筛选候选 m6A 相关基因,以预测 PD 的风险。基于候选 m6A 相关基因构建了列线图模型。通过共识聚类方法,根据选定的重要 m6A 相关基因将 PD 分为不同的 m6A 聚类。最后,我们进行免疫细胞浸润分析,以探讨不同聚类之间的免疫浸润。我们对基因表达综合数据库中的 GSE8397 数据集进行了差异分析,选择了 11 个重要的 m6A 相关基因。然后,使用随机森林模型筛选候选 m6A 相关基因,以预测 PD 的风险。基于候选 m6A 相关基因构建了列线图模型。决策曲线分析表明,患者可以从列线图模型中受益。通过共识聚类方法,根据选定的重要 m6A 相关基因将 PD 分为 2 个 m6A 聚类(cluster A 和 cluster B)。免疫细胞浸润分析表明,cluster A 和 cluster B 表现出不同的免疫表型。总之,m6A 相关基因在 PD 的发展中起着重要作用,我们对 m6A 聚类的研究可能为未来 PD 的个体化治疗策略提供指导。