Callan Katrina, Prince Cassidy R, Feaga Heather A
Department of Microbiology, Cornell University, Ithaca, New York, USA.
mBio. 2024 Dec 11;15(12):e0232224. doi: 10.1128/mbio.02322-24. Epub 2024 Nov 13.
In bacteria, if a ribosome translates an mRNA lacking a stop codon it becomes stalled at the 3' end of the message. These ribosomes must be rescued by -translation or the alternative rescue factors (ArfA or ArfB). However, mounting evidence suggests that the ribosome quality control (RQC) pathway may also rescue non-stop ribosomes. Here, we surveyed the conservation of ribosome rescue pathways in >15,000 bacterial genomes. We found that -translation is conserved in >97% of bacterial genomes, while the other rescue pathways are restricted to particular phyla. We did not detect the gene encoding RqcH, the major mediator of RQC, in Proteobacteria (Pseudomonadota). In all Proteobacteria investigated to date, -translation is essential in the absence of the Arf proteins. Therefore, we tested whether expression of RQC components from could rescue viability in the absence of -translation and ArfA in . We found that the RQC pathway indeed functions in and rescues the well-documented synthetic lethal phenotype of ∆∆. Moreover, we show that the RQC pathway in is essential in the absence of -translation and ArfA, further supporting a role for the RQC pathway in the rescue of non-stop ribosomes. Finally, we report a strong co-occurrence between RqcH and the ribosome splitting factor MutS2, but present experimental evidence that there are likely additional ribosome splitting factors beyond MutS2 in . Altogether, our work supports a role for RQC in non-stop ribosome rescue and provides a broad survey of ribosome rescue pathways in diverse bacteria.
In bacteria, it is estimated that 2%-4% of all translation reactions terminate with the ribosome stalled on a damaged mRNA lacking a stop codon. Mechanisms that rescue these ribosomes are essential for viability. We determined the functional overlap between the ribosome quality control pathway and the classical non-stop rescue systems [alternative rescue factor (ArfA) and -translation] in a representative Firmicute and Proteobacterium, phyla that are evolutionarily distinct. Furthermore, we used a bioinformatics approach to examine the conservation and overlap of various ribosome rescue systems in >15,000 species throughout the bacterial domain. These results provide key insights into ribosome rescue in diverse phyla.
在细菌中,如果核糖体翻译缺乏终止密码子的mRNA,它就会在mRNA的3'端停滞。这些核糖体必须通过-翻译或替代拯救因子(ArfA或ArfB)来拯救。然而,越来越多的证据表明核糖体质量控制(RQC)途径也可能拯救无终止密码子的核糖体。在这里,我们调查了超过15000个细菌基因组中核糖体拯救途径的保守性。我们发现-翻译在超过97%的细菌基因组中是保守的,而其他拯救途径则局限于特定的门。我们在变形菌门(假单胞菌门)中未检测到编码RqcH(RQC的主要介导因子)的基因。在迄今为止研究的所有变形菌中,-翻译在没有Arf蛋白的情况下是必不可少的。因此,我们测试了来自的RQC成分的表达是否能在没有-翻译和ArfA的情况下拯救的生存能力。我们发现RQC途径确实在中起作用,并拯救了记录良好的∆∆合成致死表型。此外,我们表明在没有-翻译和ArfA的情况下,中的RQC途径是必不可少的,这进一步支持了RQC途径在拯救无终止密码子核糖体中的作用。最后,我们报告了RqcH和核糖体分裂因子MutS2之间的强烈共现,但提供了实验证据表明除了MutS2之外,中可能还有其他核糖体分裂因子。总之,我们的工作支持了RQC在无终止密码子核糖体拯救中的作用,并对不同细菌中的核糖体拯救途径进行了广泛的调查。
在细菌中,估计所有翻译反应中有2%-4%以核糖体停滞在缺乏终止密码子的受损mRNA上而告终。拯救这些核糖体的机制对于生存能力至关重要。我们在具有代表性的厚壁菌门和变形菌门(在进化上不同的门)中确定了核糖体质量控制途径与经典的无终止密码子拯救系统[替代拯救因子(ArfA)和-翻译]之间的功能重叠。此外,我们使用生物信息学方法研究了整个细菌域中超过15000个物种中各种核糖体拯救系统的保守性和重叠性。这些结果为不同门中的核糖体拯救提供了关键见解。