Moore Gareth John, Günther Florian, Yallum Kaila M, Causa' Martina, Jungbluth Anna, Réhault Julien, Riede Moritz, Ortmann Frank, Banerji Natalie
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
Instituto de Física de São Carlos (IFSC), Universidade de São Paulo (USP), São Carlos, Brazil.
Nat Commun. 2024 Nov 14;15(1):9851. doi: 10.1038/s41467-024-53694-4.
The interconversion dynamics between charge transfer state charges (CTCs) and separated charges (SCs) is still an unresolved issue in the field of organic photovoltaics. Here, a transient absorption spectroscopy (TAS) study of a thermally evaporated small-molecule:fullerene system (α6T:C) in different morphologies (dilute intermixed and phase separated) is presented. Spectral decomposition reveals two charge species with distinct absorption characteristics and different dynamics. Using time-dependent density functional theory, these species are identified as CTCs and SCs, where the spectral differences arise from broken symmetry in the charge transfer state that turns forbidden transitions into allowed ones. Based on this assignment, a kinetic model is formulated allowing the characterization of the charge generation, separation, and recombination mechanisms. We find that SCs are either formed directly from excitons within a few picoseconds or more slowly (~30-80 ps) from reversible splitting of CTCs. These findings constitute the first unambiguous observation of spectrally resolved CTCs and SCs.
电荷转移态电荷(CTCs)与分离电荷(SCs)之间的相互转换动力学在有机光伏领域仍是一个未解决的问题。在此,我们展示了对热蒸发小分子:富勒烯体系(α6T:C)在不同形态(稀释混合和相分离)下的瞬态吸收光谱(TAS)研究。光谱分解揭示了两种具有不同吸收特性和不同动力学的电荷物种。使用含时密度泛函理论,这些物种被鉴定为CTCs和SCs,其中光谱差异源于电荷转移态中的对称性破缺,这使得禁戒跃迁变为允许跃迁。基于此归属,建立了一个动力学模型,可用于表征电荷产生、分离和复合机制。我们发现SCs要么在几皮秒内直接由激子形成,要么更缓慢地(约30 - 80皮秒)由CTCs的可逆分裂形成。这些发现构成了对光谱分辨的CTCs和SCs的首次明确观测。