Suppr超能文献

一种用于确定定量功能性肺成像中误差的自举残差方法。

A bootstrapping residuals approach to determine the error in quantitative functional lung imaging.

作者信息

Slawig Anne, Weng Andreas Max, Veldhoen Simon, Köstler Herbert

机构信息

Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany.

University Clinic and Outpatient Clinic for Radiology, Medical Physics Group, University Hospital Halle (Saale), Halle, Germany.

出版信息

Magn Reson Med. 2025 Apr;93(4):1484-1498. doi: 10.1002/mrm.30367. Epub 2024 Nov 17.

Abstract

PURPOSE

To implement and validate an algorithm to determine the statistical errors in self-gated non-contrast-enhanced functional lung imaging.

METHODS

A bootstrapping residuals approach to determine the error in quantitative functional lung imaging is proposed. Precision and accuracy of the median error over the lungs, as well as reproducibility of the approach were investigated in 7 volunteers. The algorithm was additionally applied to data acquired in a patient with cystic fibrosis.

RESULTS

The obtained bootstrapping error maps appear comparable to the error maps determined from repeated measurements, and median absolute error values for both methods show comparable median errors when reducing the number of averages. In a volunteer in whom 10 consecutive measurements were carried out, the median functional parameters were ventilation = 0.22 mL gas/mL lung tissue, perfusion amplitude = 0.028, perfusion timing = -82 ms, whereas precision and accuracy of the median error were below 3.2 × 10 mL gas/mL lung for ventilation tissue, 4.4 × 10 for perfusion amplitude, and 11 ms for perfusion timing. In the measurement of the patient, low errors in areas with reduced ventilation support the assessment as real defects.

CONCLUSION

Using a bootstrapping residuals method, the error of functional lung MRI could be determined without the need for repeated measurements. The error values can be determined reproducibly and can be used as a future means of quality control for functional lung MRI.

摘要

目的

实施并验证一种用于确定自门控非对比增强功能性肺成像统计误差的算法。

方法

提出一种通过自展残差法来确定定量功能性肺成像中的误差。在7名志愿者中研究了肺部中位数误差的精密度和准确性以及该方法的可重复性。该算法还应用于一名囊性纤维化患者采集的数据。

结果

所获得的自展误差图与通过重复测量确定的误差图相似,并且当减少平均次数时,两种方法的中位数绝对误差值显示出相当的中位数误差。在一名连续进行10次测量的志愿者中,中位数功能参数为通气量 = 0.22 mL气体/mL肺组织,灌注幅度 = 0.028,灌注时间 = -82 ms,而通气组织的中位数误差的精密度和准确性在3.2×10 mL气体/mL肺以下,灌注幅度为4.4×10,灌注时间为11 ms。在患者的测量中,通气减少区域的低误差支持将其评估为真正的缺陷。

结论

使用自展残差法,可以在无需重复测量的情况下确定功能性肺MRI的误差。误差值可以可重复地确定,并可作为未来功能性肺MRI质量控制的一种手段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59fd/11782724/a727362c91c3/MRM-93-1484-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验