Kahlon Updip, Ricca Francesco Dalla, Pillai Saraswathi J, Olivetta Marine, Tharp Kevin M, Jao Li-En, Dudin Omaya, McDonald Kent, Aydogan Mustafa G
Department of Biochemistry and Biophysics, University of California, San Francisco, USA.
Touro College of Osteopathic Medicine, Touro University, USA.
bioRxiv. 2024 Oct 29:2024.10.28.620733. doi: 10.1101/2024.10.28.620733.
Embryos undergo pre-gastrulation cleavage cycles to generate a critical cell mass before transitioning to morphogenesis. The molecular underpinnings of this transition have traditionally centered on zygotic chromatin remodeling and genome activation, as their repression can prevent downstream processes of differentiation and organogenesis. Despite precedents that oxygen depletion can similarly suspend development in early embryos, hinting at a pivotal role for oxygen metabolism in this transition, whether there is a chemical switch that licenses the onset of morphogenesis remains unknown. Here we discover that a mitochondrial oxidant acts as a metabolic switch to license the onset of animal morphogenesis. Concomitant with the instatement of mitochondrial membrane potential, we found a burst-like accumulation of mitochondrial superoxide (O ) during fly blastoderm formation. chemistry experiments revealed that an electron leak from site III at ETC Complex III is responsible for O production. Importantly, depleting mitochondrial O fully mimics anoxic conditions and, like anoxia, induces suspended animation prior to morphogenesis, but not after. Specifically, HO, and not ONOO, NO, or HO•, can single-handedly account for this mtROS-based response. We demonstrate that depleting mitochondrial O similarly prevents the onset of morphogenetic events in vertebrate embryos and ichthyosporea, close relatives of animals. We postulate that such redox-based metabolic licensing of morphogenesis is an ancient trait of holozoans that couples the availability of oxygen to development, conserved from early-diverging animal relatives to vertebrates.
胚胎在原肠胚形成前经历卵裂周期,以在过渡到形态发生之前产生关键的细胞团。传统上,这种转变的分子基础集中在合子染色质重塑和基因组激活上,因为它们的抑制会阻止分化和器官发生的下游过程。尽管有先例表明缺氧同样会使早期胚胎的发育暂停,这暗示了氧代谢在这种转变中起关键作用,但是否存在一种化学开关来启动形态发生仍不清楚。在这里,我们发现一种线粒体氧化剂作为一种代谢开关来启动动物形态发生。伴随着线粒体膜电位的恢复,我们在果蝇胚盘形成过程中发现了线粒体超氧化物(O)的爆发式积累。化学实验表明,电子传递链复合物III的位点III发生电子泄漏是产生O的原因。重要的是,耗尽线粒体O完全模拟了缺氧条件,并且与缺氧一样,在形态发生之前诱导假死状态,但在形态发生之后则不会。具体而言,是HO,而不是ONOO、NO或HO•,能够单独解释这种基于线粒体活性氧的反应。我们证明,耗尽线粒体O同样会阻止脊椎动物胚胎和动物的近亲鱼孢菌中形态发生事件的开始。我们推测,这种基于氧化还原的形态发生代谢许可机制是全动物界的一个古老特征,它将氧的可利用性与发育联系起来,从早期分化的动物亲属到脊椎动物都得以保留。