Suppr超能文献

通过膜脂重塑对周围脂肪储存能力进行饮食控制。

Dietary control of peripheral adipose storage capacity through membrane lipid remodelling.

作者信息

Tol Marcus J, Shimanaka Yuta, Bedard Alexander H, Sapia Jennifer, Cui Liujuan, Colaço-Gaspar Mariana, Hofer Peter, Ferrari Alessandra, Qian Kevin, Kennelly John P, Lee Stephen D, Gao Yajing, Xiao Xu, Gao Jie, Mack Julia J, Weston Thomas A, Pan Calvin, Lusis Aldons J, Williams Kevin J, Su Baolong, Pike Daniel P, Reed Alex, Milosevich Natalia, Cravatt Benjamin F, Arita Makoto, Young Stephen G, Ford David A, Zechner Rudolf, Vanni Stefano, Tontonoz Peter

出版信息

bioRxiv. 2024 Oct 29:2024.10.25.620374. doi: 10.1101/2024.10.25.620374.

Abstract

Complex genetic and dietary cues contribute to the development of obesity, but how these are integrated on a molecular level is incompletely understood. Here, we show that PPARγ supports hypertrophic expansion of adipose tissue via transcriptional control of LPCAT3, a membrane-bound O-acyltransferase that enriches diet-derived omega-6 ( -6) polyunsaturated fatty acids (PUFAs) in the phospholipidome. In high-fat diet-fed mice, lowering membrane -6 PUFA levels by adipocyte-specific knockout ( ) or by dietary lipid manipulation leads to dysfunctional triglyceride (TG) storage, ectopic fat deposition and insulin resistance. Aberrant lipolysis of stored TGs in adipose tissues instigates a non-canonical adaptive response that engages a futile lipid cycle to increase energy expenditure and limit further body weight gain. Mechanistically, we find that adipocyte LPCAT3 activity promotes TG storage by selectively enriching -6 arachidonoyl-phosphatidylethanolamine at the ER-lipid droplet interface, which in turn favours the budding of large droplets that exhibit greater resistance to ATGL-dependent hydrolysis. Thus, our study highlights the PPARγ-LPCAT3 pathway as a molecular link between dietary -6 PUFA intake, adipose expandability and systemic energy balance.

摘要

复杂的遗传和饮食因素导致肥胖的发生,但其在分子水平上如何整合尚不完全清楚。在此,我们表明过氧化物酶体增殖物激活受体γ(PPARγ)通过对溶血磷脂酰胆碱酰基转移酶3(LPCAT3)的转录控制来支持脂肪组织的肥大扩张,LPCAT3是一种膜结合的O-酰基转移酶,可在磷脂组中富集饮食来源的ω-6(ω-6)多不饱和脂肪酸(PUFAs)。在高脂饮食喂养的小鼠中,通过脂肪细胞特异性敲除(KO)或饮食脂质操纵降低膜ω-6 PUFA水平会导致甘油三酯(TG)储存功能障碍、异位脂肪沉积和胰岛素抵抗。LPCAT3 KO脂肪组织中储存的TG异常脂解引发了一种非经典的适应性反应,即参与一个无效的脂质循环以增加能量消耗并限制体重进一步增加。从机制上讲,我们发现脂肪细胞LPCAT3活性通过在ER-脂滴界面选择性富集ω-6花生四烯酰磷脂酰乙醇胺来促进TG储存,这反过来有利于形成对依赖于脂肪甘油三酯脂肪酶(ATGL)的水解具有更大抗性的大脂滴。因此,我们的研究强调了PPARγ-LPCAT3途径是饮食ω-6 PUFA摄入、脂肪扩张能力和全身能量平衡之间的分子联系。

相似文献

1
Dietary control of peripheral adipose storage capacity through membrane lipid remodelling.
bioRxiv. 2024 Oct 29:2024.10.25.620374. doi: 10.1101/2024.10.25.620374.
3
Adipose tissue peroxisomal lipid synthesis orchestrates obesity and insulin resistance through LXR-dependent lipogenesis.
Mol Metab. 2024 Apr;82:101913. doi: 10.1016/j.molmet.2024.101913. Epub 2024 Mar 7.
4
Hypoxia induced lipid droplet accumulation promotes resistance to ferroptosis in prostate cancer.
Oncotarget. 2025 Jun 25;16:532-544. doi: 10.18632/oncotarget.28750.
5
Partial inhibition of adipose CIDEC improves insulin sensitivity and increases energy expenditure in high-fat diet-fed mice via activating ATGL-PPARα pathway.
Biochim Biophys Acta Mol Cell Biol Lipids. 2025 Aug;1870(6):159659. doi: 10.1016/j.bbalip.2025.159659. Epub 2025 Jul 7.
8
9
Ventromedial hypothalamic nucleus subset stimulates tissue thermogenesis via preoptic area outputs.
Mol Metab. 2024 Jun;84:101951. doi: 10.1016/j.molmet.2024.101951. Epub 2024 May 8.
10
Reduction in saturated fat intake for cardiovascular disease.
Cochrane Database Syst Rev. 2015 Jun 10(6):CD011737. doi: 10.1002/14651858.CD011737.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验