Miescher Iris, Schaffner Nicola, Rieber Julia, Meier Buergisser Gabriella, Ongini Esteban, Yang Yao, Milionis Athanasios, Vogel Viola, Snedeker Jess G, Calcagni Maurizio, Buschmann Johanna
Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Sternwartstrasse 14, Zurich 8091, Switzerland.
University Clinic Balgrist, Orthopaedic Biomechanics, Forchstrasse 340, Zurich 8008, Switzerland.
Data Brief. 2024 Oct 23;57:111069. doi: 10.1016/j.dib.2024.111069. eCollection 2024 Dec.
As one major problem after tendon rupture repair, surgeons are confronted with fibrotic adhesion formation of the healing tendon to the surrounding tissue. Although early active motion is recommended during rehabilitation, adhesions may lead to joint stiffness and a restricted range of motion. One viable option to counteract adhesion formation is to add a thin elastic tube that is placed over the conventionally sutured repair site. Such a tube reduces adhesion formation because it acts as a physical barrier. Additionally, such barriers can be optimized by adding a biolubricant. We here present adhesion data of rabbit Achilles tendons that were fully transsected, repaired with a 4-strand suture and received a) no implant; b) an electrospun DegraPol tube and c) a bi-layered tube with one electrospun DegraPol layer and one high molecular weight hyaluronic acid (HA)/polyethylene oxide (PEO) electrospun layer. Based on Picrosirius red stained tendon cross-sections three weeks post-operation, the percentage of adhesion data is presented. Moreover, mechanical data of the implant materials are presented as a further dataset, with the following readouts: fracture strain [%], ultimate tensile stress [MPa] and Young's modulus [MPa]. They are presented in axial and transverse stretching directions, respectively. The adhesion data can be reused for comparison to other implant materials, drugs or anti-adhesive strategies that are applied in similar pre-clinical models like the rabbit Achilles tendon model. The mechanical data of the implant materials offer the possibility to compare electrospun meshes based on other polymers to the materials used here or for computational models of such materials.
作为肌腱断裂修复后的一个主要问题,外科医生面临着愈合的肌腱与周围组织形成纤维化粘连的情况。尽管康复期间建议早期进行主动活动,但粘连可能导致关节僵硬和活动范围受限。一种可行的对抗粘连形成的方法是添加一根细弹性管,将其放置在传统缝合的修复部位上方。这样的管子可减少粘连形成,因为它起到了物理屏障的作用。此外,通过添加生物润滑剂可以优化此类屏障。我们在此展示了兔跟腱的粘连数据,这些跟腱被完全横断,用四股缝线修复,并分别接受了以下处理:a) 不植入任何东西;b) 一个电纺DegraPol管;c) 一个双层管,其中一层是电纺DegraPol层,另一层是高分子量透明质酸(HA)/聚环氧乙烷(PEO)电纺层。基于术后三周的天狼星红染色肌腱横截面,给出了粘连数据的百分比。此外,还给出了植入材料的力学数据作为另一组数据集,其读数如下:断裂应变 [%]、极限拉伸应力 [MPa] 和杨氏模量 [MPa]。它们分别在轴向和横向拉伸方向上呈现。这些粘连数据可再次用于与其他植入材料、药物或抗粘连策略进行比较,这些材料或策略应用于类似的临床前模型,如兔跟腱模型。植入材料的力学数据提供了将基于其他聚合物的电纺网与这里使用的材料进行比较的可能性,或者用于此类材料的计算模型。