Leng Jiancai, Gao Licai, Jiang Xiuquan, Lou Yitai, Sun Yuan, Wang Chen, Li Jun, Zhao Heng, Feng Chao, Xu Fangzhou, Zhang Yang, Jung Tzyy-Ping
International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 University Road, Jinan, Shandong Province 250353, People's Republic of China.
Rehabilitation and Physical Therapy Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 42 Wenhuaxi Road, Jinan, Shandong Province 250011, People's Republic of China.
J Neural Eng. 2024 Dec 27;21(6). doi: 10.1088/1741-2552/ad9403.
Electroencephalogram (EEG) signals exhibit temporal-frequency-spatial multi-domain feature, and due to the nonplanar nature of the brain surface, the electrode distributions follow non-Euclidean topology. To fully resolve the EEG signals, this study proposes a temporal-frequency-spatial multi-domain feature fusion graph attention network (GAT) for motor imagery (MI) intention recognition in spinal cord injury (SCI) patients.The proposed model uses phase-locked value (PLV) to extract spatial phase connectivity information between EEG channels and continuous wavelet transform to extract valid EEG information in the time-frequency domain. It then models as a graph data structure containing multi-domain information. The gated recurrent unit and GAT learn EEG's dynamic temporal-spatial information. Finally, the fully connected layer outputs the MI intention recognition results.After 10 times 10-fold cross-validation, the proposed model can achieve an average accuracy of 95.82%. Furthermore, this study analyses the event-related desynchronization/event-related synchronization and PLV brain network to explore the brain activity of SCI patients during MI.This study confirms the potential of the proposed model in terms of EEG decoding performance and provides a reference for the mechanism of neural activity in SCI patients.
脑电图(EEG)信号呈现出时间-频率-空间多域特征,并且由于脑表面的非平面性质,电极分布遵循非欧几里得拓扑结构。为了全面解析EEG信号,本研究提出了一种用于脊髓损伤(SCI)患者运动想象(MI)意图识别的时间-频率-空间多域特征融合图注意力网络(GAT)。所提出的模型使用锁相值(PLV)来提取EEG通道之间的空间相位连接信息,并使用连续小波变换来提取时频域中的有效EEG信息。然后将其建模为包含多域信息的图数据结构。门控循环单元和GAT学习EEG的动态时空信息。最后,全连接层输出MI意图识别结果。经过10次10折交叉验证,所提出的模型平均准确率可达95.82%。此外,本研究分析了事件相关去同步化/事件相关同步化以及PLV脑网络,以探究SCI患者在MI过程中的脑活动。本研究证实了所提出模型在EEG解码性能方面的潜力,并为SCI患者神经活动机制提供了参考。