Suppr超能文献

石榴石型固态电解质:用于增强锂金属电池的晶相调控与界面改性

Garnet-Type Solid-State Electrolytes: Crystal-Phase Regulation and Interface Modification for Enhanced Lithium Metal Batteries.

作者信息

Wu Jialong, Chen Weiheng, Hao Bin, Jiang Zhong-Jie, Jin Guangri, Jiang Zhongqing

机构信息

Department of Physics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, P. R. China.

Vehicle Energy and Safety Laboratory, Department of Mechanical Engineering, Ningbo University of Technology, Ningbo, 315211, P. R. China.

出版信息

Small. 2025 Jan;21(2):e2407983. doi: 10.1002/smll.202407983. Epub 2024 Nov 18.

Abstract

Due to their substantial energy density, rapid charging and discharging rates, and extended lifespan, lithium-ion batteries have attained broad application across various industries. However, their limited theoretical capacity struggles to meet the growing demand for battery capacity in consumer electronics, automotive, and aerospace applications. As a promising substitute, solid-state lithium-metal batteries (SSLBs) have emerged, utilizing a lithium-metal anode that boasts a significant theoretical specific capacity and non-flammable solid-state electrolytes (SSEs) to address energy density limitations and safety concerns. For SSLBs to attain large-scale commercial viability, SSEs require heightened ionic-conductivity, improved mechanical characteristics, and enhanced chemical and electrochemical stability. Furthermore, tackling the challenges related to interfacial contacts between SSEs and the lithium-metal anode is imperative. This review comprehensively overviews the primary methods used to prepare garnet SSEs and summarizes doping strategies for various sites on LiLaZrO (LLZO) garnet SSEs, aiming to optimize the crystal phase to achieve more favorable properties in SSE applications. Additionally, it discusses strategies for modifying the interfacial contact between the lithium-metal anode and SSEs, classifying them into three areas: surface modification, interlayer-modification, and composite anodes. This review aims to serve as a valuable reference for future researchers working on high-performance garnet SSEs and effective interfacial-modification strategies.

摘要

由于锂离子电池具有较高的能量密度、快速的充放电速率和较长的使用寿命,已在各个行业得到广泛应用。然而,其有限的理论容量难以满足消费电子、汽车和航空航天应用中对电池容量不断增长的需求。作为一种有前景的替代方案,固态锂金属电池(SSLBs)应运而生,它采用具有高理论比容量的锂金属阳极和不可燃的固态电解质(SSEs)来解决能量密度限制和安全问题。为使SSLBs具备大规模商业可行性,SSEs需要提高离子电导率、改善机械性能以及增强化学和电化学稳定性。此外,解决与SSEs和锂金属阳极之间界面接触相关的挑战也至关重要。本综述全面概述了制备石榴石型SSEs的主要方法,并总结了LiLaZrO(LLZO)石榴石型SSEs不同位点的掺杂策略,旨在优化晶相以在SSE应用中获得更优异的性能。此外,还讨论了改善锂金属阳极与SSEs之间界面接触的策略,将其分为三个方面:表面改性、中间层改性和复合阳极。本综述旨在为未来从事高性能石榴石型SSEs及有效界面改性策略研究的人员提供有价值的参考。

相似文献

3
Solid Interfaces for the Garnet Electrolytes.用于石榴石电解质的固态界面
Adv Mater. 2024 Apr;36(15):e2306111. doi: 10.1002/adma.202306111. Epub 2024 Jan 18.
8
Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries.石榴石型固态电解质:材料、界面与电池
Chem Rev. 2020 May 27;120(10):4257-4300. doi: 10.1021/acs.chemrev.9b00427. Epub 2020 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验