Suppr超能文献

使用人工智能工具对MRI图像中的颞下颌关节进行评估:我们目前的进展如何?一项系统综述。

Temporomandibular joint assessment in MRI images using artificial intelligence tools: where are we now? A systematic review.

作者信息

Manek Mitul, Maita Ibraheem, Bezerra Silva Diego Filipe, Pita de Melo Daniela, Major Paul W, Jaremko Jacob L, Almeida Fabiana T

机构信息

School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.

Graduate Program in Dentistry, State University of Paraiba, Campina Grande, Brazil.

出版信息

Dentomaxillofac Radiol. 2025 Jan 1;54(1):1-11. doi: 10.1093/dmfr/twae055.

Abstract

OBJECTIVES

To summarize the current evidence on the performance of artificial intelligence (AI) algorithms for the temporomandibular joint (TMJ) disc assessment and TMJ internal derangement diagnosis in magnetic resonance imaging (MRI) images.

METHODS

Studies were gathered by searching 5 electronic databases and partial grey literature up to May 27, 2024. Studies in humans using AI algorithms to detect or diagnose internal derangements in MRI images were included. The methodological quality of the studies was evaluated using the Quality Assessment Tool for Diagnostic of Accuracy Studies-2 (QUADAS-2) and a proposed checklist for dental AI studies.

RESULTS

Thirteen studies were included in this systematic review. Most of the studies assessed disc position. One study assessed disc perforation. A high heterogeneity related to the patient selection domain was found between the studies. The studies used a variety of AI approaches and performance metrics with CNN-based models being the most used. A high performance of AI models compared to humans was reported with accuracy ranging from 70% to 99%.

CONCLUSIONS

The integration of AI, particularly deep learning, in TMJ MRI, shows promising results as a diagnostic-assistance tool to segment TMJ structures and classify disc position. Further studies exploring more diverse and multicentre data will improve the validity and generalizability of the models before being implemented in clinical practice.

摘要

目的

总结目前关于人工智能(AI)算法在磁共振成像(MRI)图像中对颞下颌关节(TMJ)盘评估及TMJ内紊乱诊断性能的证据。

方法

通过检索5个电子数据库和部分灰色文献收集截至2024年5月27日的研究。纳入使用AI算法检测或诊断MRI图像中内紊乱的人体研究。使用诊断准确性研究质量评估工具-2(QUADAS-2)和一份针对牙科AI研究的拟议清单对研究的方法学质量进行评估。

结果

本系统评价纳入了13项研究。大多数研究评估了盘位置。一项研究评估了盘穿孔。研究之间在患者选择领域发现高度异质性。这些研究使用了多种AI方法和性能指标,其中基于卷积神经网络(CNN)的模型使用最为频繁。报告显示与人类相比,AI模型具有较高性能,准确率范围为70%至99%。

结论

AI,尤其是深度学习,在TMJ MRI中的整合,作为一种用于分割TMJ结构和分类盘位置的诊断辅助工具显示出有前景的结果。在临床实践中实施之前,探索更多样化和多中心数据的进一步研究将提高模型的有效性和可推广性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf0c/11800278/bc5f9816d3c9/twae055f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验