Bera Abhishek, Joshi Pritish, Patra Niladri
Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India.
J Chem Inf Model. 2024 Dec 9;64(23):8892-8908. doi: 10.1021/acs.jcim.4c01523. Epub 2024 Nov 20.
Since their inception in antibacterial therapy, macrolide-based antibiotics have significantly shaped the evolutionary pathways of pathogenic bacteria, driving them to develop diverse antimicrobial resistance (AMR) mechanisms. Among these, macrolide esterase, commonly referred to as erythromycin esterase, emerged as a critical defense mechanism, enabling bacteria to detoxify macrolides by hydrolyzing the macrolactone ring within the bacterial cell. In this study, we delve into the intricate interactions and conformational dynamics of erythromycin esterase C (EreC), a key member of the Ere enzyme family. We have focused on three FDA-approved and widely prescribed macrolides─erythromycin, clarithromycin, and azithromycin─by employing classical molecular dynamics, absolute binding free energy calculations, and 2D well-tempered metadynamics simulations to explore their interactions with EreC. To estimate the absolute binding free energies, we have used the recently developed and robust "Streamlined Alchemical Free Energy Perturbation (SAFEP)" protocol. The results from our molecular dynamics simulations and advanced analyses portrayed the crucial role of hydrophobic interactions within the macrolide binding cleft of EreC, along with the significant influence of the minor lobe in facilitating overall structural fluctuation. In silico alanine scanning identified top three hydrophobic residues, i.e., PHE248, MET333, and PHE344, responsible for macrolide binding inside that cleft. According to the free energy calculations, azithromycin and clarithromycin showed greater binding affinities toward EreC than the parent macrolide erythromycin. Moreover, 2D metadynamics simulations along with graph theory-based eigenvector centrality analyses revealed a metastable "semiopen" state during the hypothesized "active loop closure" of the EreC protein triggered by subtle conformational changes of an important histidine residue, HIS289, upon macrolide capture, drawing a fascinating parallel to the renowned "Venus flytrap" mechanism.
自从基于大环内酯类的抗生素用于抗菌治疗以来,它们显著地塑造了病原菌的进化途径,促使其发展出多种抗菌耐药性(AMR)机制。其中,大环内酯酯酶,通常称为红霉素酯酶,成为一种关键的防御机制,使细菌能够通过水解细菌细胞内的大环内酯环来使大环内酯类解毒。在本研究中,我们深入探究了红霉素酯酶C(EreC)的复杂相互作用和构象动力学,EreC是Ere酶家族的关键成员。我们聚焦于三种美国食品药品监督管理局(FDA)批准且广泛使用的大环内酯类药物——红霉素、克拉霉素和阿奇霉素,采用经典分子动力学、绝对结合自由能计算以及二维有限温度元动力学模拟来探索它们与EreC的相互作用。为了估算绝对结合自由能,我们使用了最近开发的稳健的“简化炼金术自由能微扰(SAFEP)”方案。我们分子动力学模拟和高级分析的结果描绘了EreC大环内酯结合裂隙内疏水相互作用的关键作用,以及小叶在促进整体结构波动方面的显著影响。计算机丙氨酸扫描确定了负责大环内酯在该裂隙内结合的前三个疏水残基,即PHE248、MET333和PHE344。根据自由能计算,阿奇霉素和克拉霉素对EreC的结合亲和力高于母体大环内酯类药物红霉素。此外,二维元动力学模拟以及基于图论的特征向量中心性分析揭示,在大环内酯捕获后,由重要组氨酸残基HIS289的细微构象变化触发的EreC蛋白假定“活性环闭合”过程中存在一个亚稳态的“半开放”状态,这与著名的“捕蝇草”机制形成了引人入胜的类比。