Suppr超能文献

自动驾驶车辆与乱穿马路行人交互中的决策:一种风险感知深度强化学习方法。

Decision-making of autonomous vehicles in interactions with jaywalkers: A risk-aware deep reinforcement learning approach.

作者信息

Zhang Ziqian, Li Haojie, Chen Tiantian, Sze N N, Yang Wenzhang, Zhang Yihao, Ren Gang

机构信息

School of Transportation, Southeast University, China; Jiangsu Key Laboratory of Urban ITS, China; Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, China.

School of Transportation, Southeast University, China; Jiangsu Key Laboratory of Urban ITS, China; Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, China.

出版信息

Accid Anal Prev. 2025 Feb;210:107843. doi: 10.1016/j.aap.2024.107843. Epub 2024 Nov 19.

Abstract

Jaywalking, as a hazardous crossing behavior, leaves little time for drivers to anticipate and respond promptly, resulting in high crossing risks. The prevalence of Autonomous Vehicle (AV) technologies has offered new solutions for mitigating jaywalking risks. In this study, we propose a risk-aware deep reinforcement learning (DRL) approach for AVs to make decisions safely and efficiently in jaywalker-vehicle interactions. Notably, a risk prediction module is incorporated into the traditional DRL framework, making the AV agent risk-aware. Considering the complexity of jaywalker-vehicle conflicts, an encoder-decoder model is adopted as the risk prediction module, which comprehensively integrates multi-source data and predicts probabilities of the final conflict severity levels. The risk-aware DRL approach is applied in a simulated environment established in Anylogic, where the motion features of jaywalkers and vehicles are calibrated using real-world survey data. The trained driving policies are evaluated from perspectives of safety and efficiency across three scenarios with escalading levels of jaywalker volume. Regarding safety performance, the Baseline policy performs the worst in "medium jaywalker volume" scenario and "high jaywalker volume" scenario, while our Proposed risk-aware method outperforms the other methods, with the "low TTC ratio" metric stabilizing near 0.08. Moreover, as the scenario gets more complex, the superiority of our Proposed risk-aware policy gets more evident. In terms of efficiency performance, our Proposed risk-aware policy ranks the second best, achieving an "AV delay" metric around 8.1 s in the "medium jaywalker volume" scenario and 8.5 s in the "high jaywalker volume" scenario. In practice, the proposed risk-aware DRL approach can help AV agents perceive potential risks in advance and navigate through potential jaywalking areas safely and efficiently, further enhancing pedestrian safety.

摘要

乱穿马路作为一种危险的横穿行为,使得驾驶员几乎没有时间来提前预判并迅速做出反应,从而导致很高的横穿风险。自动驾驶汽车(AV)技术的普及为降低乱穿马路风险提供了新的解决方案。在本研究中,我们提出了一种风险感知深度强化学习(DRL)方法,以使自动驾驶汽车在与乱穿马路者的交互中能够安全、高效地做出决策。值得注意的是,一个风险预测模块被纳入到传统的DRL框架中,使自动驾驶汽车智能体具有风险感知能力。考虑到乱穿马路者与车辆冲突的复杂性,采用了一个编码器-解码器模型作为风险预测模块,该模型综合整合多源数据并预测最终冲突严重程度等级的概率。这种风险感知DRL方法应用于Anylogic中建立的模拟环境,其中乱穿马路者和车辆的运动特征是使用真实世界的调查数据进行校准的。从安全和效率的角度,在乱穿马路者数量逐渐增加的三种场景下对训练好的驾驶策略进行评估。关于安全性能,基线策略在“中等乱穿马路者数量”场景和“高乱穿马路者数量”场景中表现最差,而我们提出的风险感知方法优于其他方法,“低碰撞时间比率”指标稳定在0.08左右。此外,随着场景变得更加复杂,我们提出的风险感知策略的优势更加明显。在效率性能方面,我们提出的风险感知策略排名第二,在“中等乱穿马路者数量”场景中实现了约8.1秒的“自动驾驶汽车延迟”指标,在“高乱穿马路者数量”场景中为8.5秒。在实际应用中,所提出的风险感知DRL方法可以帮助自动驾驶汽车智能体提前感知潜在风险,并安全、高效地驶过潜在的乱穿马路区域,进一步提高行人安全性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验