Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases (presently ICMR-NIRBI), Kolkata, West Bengal, India.
Department of Plant and Microbial Biology, University of California, Berkeley, USA.
Gut Microbes. 2024 Jan-Dec;16(1):2428425. doi: 10.1080/19490976.2024.2428425. Epub 2024 Nov 20.
Rotavirus (RV) accounts for 19.11% of global diarrheal deaths. Though GAVI assisted vaccine introduction has curtailed RV induced mortality, factors like RV strain diversity, differential infantile gut microbiome, malnutrition, interference from maternal antibodies and other administered vaccines, etc. often compromise vaccine efficacy. Herein emerges the need of antivirals which can be administered adjunct to vaccination to curb the socio-economic burden stemming from frequent RV infection. Cognisance of pathogen-perturbed host cellular physiology has revolutionized translational research and aided precision-based therapy, particularly for viruses, with no metabolic machinery of their own. To date there has been limited exploration of the host cellular metabolome in context of RV infection. In this study, we explored the endometabolomic landscape of human intestinal epithelial cells (HT-29) on RV-SA11 infection. Significant alteration of host cellular metabolic pathways like the nucleotide biosynthesis pathway, alanine, aspartate and glutamate metabolism pathway, the host citric acid cycle was observed in RV-SA11 infection scenario. Detailed study further revealed that RV replication is exclusively dependent on glutamine metabolism for their propagation in host cells. Glutamine metabolism generates glutamate, aspartate, and asparagine which facilitates virus infection. Abrogation of aspartate biogenesis from glutamine by use of Aminooxyacetic acid (AOAA), significantly curbed RV-SA11 infection in-vitro and in-vivo. Overall, the study improves our understanding of host-rotavirus interactome and recognizes host glutamine metabolism pathway as a suitable target for effective therapeutic intervention against RV infection.
轮状病毒 (RV) 占全球腹泻死亡人数的 19.11%。尽管 GAVI 协助引入疫苗已减少了 RV 引起的死亡率,但 RV 株多样性、婴儿肠道微生物组的差异、营养不良、母体抗体和其他已接种疫苗的干扰等因素常常会降低疫苗的效果。因此,需要使用抗病毒药物来辅助疫苗接种,以遏制因 RV 频繁感染而带来的社会经济负担。对病原体干扰宿主细胞生理学的认识促进了转化研究,并为没有自身代谢机制的病毒提供了基于精准医学的治疗方法。迄今为止,针对 RV 感染,宿主细胞代谢组学的研究还很有限。在这项研究中,我们探讨了人类肠道上皮细胞 (HT-29) 在 RV-SA11 感染时的内代谢组学图谱。在 RV-SA11 感染的情况下,宿主细胞代谢途径如核苷酸生物合成途径、丙氨酸、天冬氨酸和谷氨酸代谢途径和宿主柠檬酸循环发生了显著变化。进一步的详细研究表明,RV 复制完全依赖于谷氨酰胺代谢来在宿主细胞中繁殖。谷氨酰胺代谢产生谷氨酸、天冬氨酸和天冬酰胺,这有利于病毒感染。使用氨基氧乙酸 (AOAA) 阻断谷氨酰胺合成天冬氨酸可显著抑制 RV-SA11 的体外和体内感染。总的来说,这项研究增进了我们对宿主-轮状病毒相互作用组的理解,并将宿主谷氨酰胺代谢途径确定为针对 RV 感染的有效治疗干预的合适靶点。