Global Vaccines and Biologics Commercialization, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania, 19486, USA.
AAPS J. 2024 Nov 21;27(1):5. doi: 10.1208/s12248-024-00973-z.
Biotherapeutics are subject to inherent heterogeneity due to the complex biomanufacturing processes. Numerous analytical techniques have been employed to identify, characterize, and monitor critical quality attributes (CQAs) to ensure product safety, and efficacy. Mass spectrometry (MS)-based multi-attribute method (MAM) has become increasingly popular in biopharmaceutical industry due to its potential to replace multiple traditional analytical methods. However, the correlation between MAM and conventional methods remains to be fully understood. Additionally, the complex analytical workflow and limited throughput of MAM restricts its implementation as a quality control (QC) release assay. Herein, we present a simple, robust, and rapid MAM workflow for monitoring CQAs. Our rapid approach allowed us to create a database from ~700 samples, including site-specific post-translational modifications (PTMs) quantitation results using MAM and data from traditional charge variant and oxidation characterization methods. To gain insights from this database, we employ multivariate data analysis (MVDA) to thoroughly exploit the data. By applying partial least squares regression (PLSR) models, we demonstrate the ability to quantitatively predict charge variants in ion exchange chromatography (IEX) assay and oxidation abundances in hydrophobic-interaction chromatography (HIC) assay using MAM data, highlighting the interconnectivity between MAM and traditional product quality assays. These findings help evaluate the suitability of MAM as a replacement for conventional methods for release, and more importantly, contribute to enhanced process and product understanding.
生物疗法由于复杂的生物制造工艺而存在固有异质性。已经采用了许多分析技术来识别、表征和监测关键质量属性(CQAs),以确保产品的安全性和功效。基于质谱(MS)的多属性方法(MAM)由于有可能替代多种传统分析方法,因此在生物制药行业中越来越受欢迎。然而,MAM 与传统方法之间的相关性仍有待充分理解。此外,MAM 复杂的分析工作流程和有限的吞吐量限制了其作为质量控制(QC)放行检测的实施。在此,我们提出了一种用于监测 CQAs 的简单、稳健、快速的 MAM 工作流程。我们的快速方法使我们能够从约 700 个样本中创建一个数据库,包括使用 MAM 进行的特定部位翻译后修饰(PTM)定量结果,以及来自传统电荷变异体和氧化表征方法的数据。为了从该数据库中获得见解,我们采用多元数据分析(MVDA)来充分利用数据。通过应用偏最小二乘回归(PLSR)模型,我们证明了使用 MAM 数据定量预测离子交换色谱(IEX)分析中的电荷变异体和疏水相互作用色谱(HIC)分析中的氧化丰度的能力,突出了 MAM 与传统产品质量分析之间的相互联系。这些发现有助于评估 MAM 作为替代传统放行方法的适用性,更重要的是,有助于增强对工艺和产品的理解。