Suppr超能文献

利用光刻技术实现波导放大器与无源聚合物光子器件的单片集成。

Monolithic integration of waveguide amplifiers and passive polymer photonic devices using photolithography.

作者信息

Tao Siliang, Wang Shuangshuang, Li Changlong, Liu Tingting, Zhao Dan, Yin Yuexin, Qin Guanshi, Wang Fei, Zhang Daming

出版信息

Opt Express. 2024 Oct 21;32(22):38285-38291. doi: 10.1364/OE.533433.

Abstract

The monolithic integration of rare-earth-doped waveguide amplifiers with passive photonic devices has long been a subject of extensive research. Herein, we propose a method for active-passive monolithic integration based on polymer photonic integrated devices. The monolithic integration of passive devices with active waveguide amplifiers is achieved by spin-coating an active layer atop a passive polymer waveguide and subjecting specific regions of the active layer to selective photolithography. To validate the proposed monolithic integration scheme's impact on the performance of passive devices, performance tests were conducted on both passive and active-passive integrated 8-channel arrayed waveguide grating (AWG) devices. The crosstalk (CT) of the AWG devices before and after adding the active layer ranged from -12.04 dB to -14.72 dB and from -10.02 dB to -14.88 dB, respectively, with channel spacings of 9.29 nm and 8.80 nm, indicating consistent performance of the passive devices with the addition of the active layer. In a 0.5 cm-long active waveguide, internal net gain was achieved across all eight channels of the AWG, with a gain bandwidth ranging from 1518 nm to 1580 nm. Notably, an internal net gain of 9.5 dB was attained at 1527 nm. The successful integration of rare-earth-doped waveguide amplifiers with passive components on a monolithic chip has been achieved for the first time, requiring only two straightforward photolithography steps. This milestone not only preserves the inherent functionality of passive components but also enables effective signal amplification. This technological innovation holds the promise of fully harnessing the potential of rare-earth-doped waveguide amplifiers in the realm of photonic integrated circuits, thereby catalyzing significant breakthroughs and advancements in the field of optoelectronics.

摘要

稀土掺杂波导放大器与无源光子器件的单片集成长期以来一直是广泛研究的主题。在此,我们提出了一种基于聚合物光子集成器件的有源-无源单片集成方法。通过在无源聚合物波导顶部旋涂有源层并对有源层的特定区域进行选择性光刻,实现了无源器件与有源波导放大器的单片集成。为了验证所提出的单片集成方案对无源器件性能的影响,对无源和有源-无源集成的8通道阵列波导光栅(AWG)器件进行了性能测试。添加有源层前后AWG器件的串扰(CT)分别在-12.04 dB至-14.72 dB和-10.02 dB至-14.88 dB之间,通道间距分别为9.29 nm和8.80 nm,这表明添加有源层后无源器件的性能保持一致。在一个0.5厘米长的有源波导中,AWG的所有八个通道都实现了内部净增益,增益带宽范围为1518 nm至1580 nm。值得注意的是,在1527 nm处实现了9.5 dB的内部净增益。首次在单片芯片上成功实现了稀土掺杂波导放大器与无源元件的集成,仅需两个简单的光刻步骤。这一里程碑不仅保留了无源元件的固有功能,还实现了有效的信号放大。这项技术创新有望充分发挥稀土掺杂波导放大器在光子集成电路领域的潜力,从而推动光电子领域取得重大突破和进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验