Mukherjee Pritha, Mahanty Manisha, Dutta Bidisha, Rahaman Suneha G, Sankaran Karunakaran R, Rahaman Shaik O
University of Maryland, Department of Nutrition and Food Science, College Park, MD 20742.
bioRxiv. 2024 Nov 6:2024.11.05.622116. doi: 10.1101/2024.11.05.622116.
As aortic valve stenosis (AVS) progresses, the valve tissue also stiffens. This increase in tissue stiffness causes the valvular interstitial cells (VICs) to transform into myofibroblasts in response. VIC-to-myofibroblast differentiation is critically involved in the development of AVS. Herein, we investigated the role of mechanosensitive Ca-permeant transient receptor potential vanilloid 4 (Trpv4) channels in matrix stiffness- and transforming growth factor β1 (TGFβ1)-induced VIC-myofibroblast activation. We confirmed Trpv4 functionality in primary mouse wild-type VICs compared to Trpv4 null VICs using live Ca influx detection during application of its selective agonist and antagonist. Using physiologically relevant hydrogels of varying stiffness that respectively mimic healthy or diseased aortic valve tissue stiffness, we found that genetic ablation of Trpv4 blocked matrix stiffness- and TGFβ1-induced VIC-myofibroblast activation as determined by changes in morphology, alterations of expression of α-smooth muscle actin, and modulations of F-actin generation. Our results showed that N-terminal residues 30-130 in Trpv4 were crucial for cellular force generation and VIC-myofibroblast activation, while deletion of residues 1-30 had no noticeable negative effect on these processes. Collectively, these data suggest a differential regulatory role for Trpv4 in stiffness/TGFβ1-induced VIC-myofibroblast activation. Our data further showed that Trpv4 regulates stiffness/TGFβ1-induced PI3K-AKT activity that is required for VIC-myofibroblast differentiation and cellular force generation, suggesting a mechanism by which Trpv4 activity regulates VIC-myofibroblast activation. Altogether, these data identify a novel role for Trpv4 mechanotransduction in regulating VIC-myofibroblast activation, implicating Trpv4 as a potential therapeutic target to slow and/or reverse AVS development.
随着主动脉瓣狭窄(AVS)的进展,瓣膜组织也会变硬。组织硬度的增加会导致瓣膜间质细胞(VICs)相应地转变为肌成纤维细胞。VIC向肌成纤维细胞的分化在AVS的发展过程中起着关键作用。在此,我们研究了机械敏感的钙离子通透型瞬时受体电位香草酸4型(Trpv4)通道在基质硬度和转化生长因子β1(TGFβ1)诱导的VIC-肌成纤维细胞激活中的作用。在应用其选择性激动剂和拮抗剂期间,通过实时钙内流检测,我们证实了与Trpv4基因敲除的VIC相比,原代小鼠野生型VIC中Trpv4的功能。使用分别模拟健康或患病主动脉瓣组织硬度的不同硬度的生理相关水凝胶,我们发现Trpv4的基因敲除阻断了基质硬度和TGFβ1诱导的VIC-肌成纤维细胞激活,这是通过形态学变化、α平滑肌肌动蛋白表达的改变以及F-肌动蛋白生成的调节来确定的。我们的结果表明,Trpv4中的N端残基30-130对于细胞力的产生和VIC-肌成纤维细胞的激活至关重要,而残基1-30的缺失对这些过程没有明显的负面影响。总的来说,这些数据表明Trpv4在硬度/TGFβ1诱导的VIC-肌成纤维细胞激活中具有不同的调节作用。我们的数据进一步表明,Trpv4调节硬度/TGFβ1诱导的PI3K-AKT活性,这是VIC-肌成纤维细胞分化和细胞力产生所必需的,提示了一种Trpv4活性调节VIC-肌成纤维细胞激活的机制。总之,这些数据确定了Trpv4机械转导在调节VIC-肌成纤维细胞激活中的新作用,暗示Trpv4作为减缓或逆转AVS发展的潜在治疗靶点。