Suppr超能文献

解析氟代碳酸乙烯酯增强高性能室温钠硫电池的多功能机制

Unraveling the Multifunctional Mechanism of Fluoroethylene Carbonate in Enhancing High-Performance Room-Temperature Sodium-Sulfur Batteries.

作者信息

Weng Shixiao, Liu Yang, Lu Suwan, Xu Jingjing, Xue Jiangyan, Tu Haifeng, Wang Zhicheng, Liu Lingwang, Gao Yiwen, Sun Guochao, Li Hong, Wu Xiaodong

机构信息

College of Material Science and Engineering, Hohai University, Nanjing, Jiangsu, 210024, China.

i-Lab, iVacuum interconnected Nanotech Workstation (Nano-X), iSuzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China.

出版信息

Angew Chem Int Ed Engl. 2025 Mar 10;64(11):e202421602. doi: 10.1002/anie.202421602. Epub 2024 Dec 4.

Abstract

Room-temperature sodium-sulfur (RT Na-S) batteries has attracted growing attentions in large-scale energy storage technology, while the serious shuttle effect and interface side reaction limit its practical application. Despite fluoroethylene carbonate (FEC) has been widely used as an electrolyte additive or co-solvent to facilitate the optimization of electrode-electrolyte interphase in RT Na-S batteries, its crucial influence and mechanism have not been clearly understood. Herein, we deeply reveal the two-steps cathode-electrolyte interphase (CEI) formation by using FEC as the exclusive electrolyte solvent. The results demonstrate that FEC participates in both rapid nucleophilic reaction and electrochemical decomposition on cathode, which can effectively in situ construct a unique "chocolate-cookie" shaped CEI consisted of NaF-rich double layers. This CEI eliminates the shuttle effect and ensures the solid-solid conversion of sulfur. Along with the stable F-rich solid-electrolyte interphase (SEI) formed on the Na anode, the RT Na-S battery delivers an impressive performance (456 mAh g after 1000 cycles at 0.5 C) with almost 100 % Coulombic efficiency. This significantly simplifies electrolyte design and provides valuable insights into the application of FEC in practical Na-S batteries.

摘要

室温钠硫(RT Na-S)电池在大规模储能技术中受到越来越多的关注,然而严重的穿梭效应和界面副反应限制了其实际应用。尽管氟代碳酸乙烯酯(FEC)已被广泛用作电解质添加剂或共溶剂以促进RT Na-S电池中电极-电解质界面的优化,但其关键影响和机制尚未得到清楚理解。在此,我们通过使用FEC作为唯一的电解质溶剂深入揭示了两步阴极-电解质界面(CEI)的形成。结果表明,FEC在阴极上既参与快速亲核反应又参与电化学分解,这可以有效地原位构建一种独特的由富含NaF的双层组成的“巧克力饼干”形状的CEI。这种CEI消除了穿梭效应并确保了硫的固-固转化。随着在钠阳极上形成稳定的富含F的固体电解质界面(SEI),RT Na-S电池表现出令人印象深刻的性能(在0.5 C下循环1000次后为456 mAh g),库仑效率几乎为100%。这显著简化了电解质设计,并为FEC在实际钠硫电池中的应用提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验