Suppr超能文献

利用机器学习提高木质素-碳水化合物复合体的产量和性能

Enhancing Lignin-Carbohydrate Complexes Production and Properties With Machine Learning.

作者信息

Diment Daryna, Löfgren Joakim, Alopaeus Marie, Stosiek Matthias, Cho MiJung, Xu Chunlin, Hummel Michael, Rigo Davide, Rinke Patrick, Balakshin Mikhail

机构信息

Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo, 02150, Finland.

Department of Applied Physics, School of Science, Aalto University, Otakaari 1, Espoo, 02150, Finland.

出版信息

ChemSusChem. 2025 Apr 14;18(8):e202401711. doi: 10.1002/cssc.202401711. Epub 2024 Dec 6.

Abstract

Lignin-carbohydrate complexes (LCCs) present a unique opportunity for harnessing the synergy between lignin and carbohydrates for high-value product development. However, producing LCCs in high yields remains a significant challenge. In this study, we address this challenge with a novel approach for the targeted production of LCCs. We optimized the AquaSolv Omni (AqSO) biorefinery for the synthesis of LCCs with high carbohydrate content (up to 60/100 Ar) and high yields (up to 15 wt %) by employing machine learning (ML). Our method significantly improves the yield of LCCs compared to conventional procedures, such as ball milling and enzymatic hydrolysis. The ML approach was pivotal in tuning the biorefinery to achieve the best performance with a limited number of experimental trials. Specifically, we utilized Bayesian Optimization to iteratively gather data and examine the effects of key processing conditions-temperature, process severity, and liquid-to-solid ratio-on yield and carbohydrate content. Through Pareto front analysis, we identified optimal trade-offs between LCC yield and carbohydrate content, discovering extensive regions of processing conditions that produce LCCs with yields of 8-15 wt % and carbohydrate contents ranging from 10-40/100 Ar. To assess the potential of these LCCs for high-value applications, we measured their glass transition temperature (T), surface tension, and antioxidant activity. Notably, we found that LCCs with high carbohydrate content generally exhibit low T and surface tension. Our biorefinery concept, augmented by ML-guided optimization, represents a significant step toward scalable production of LCCs with tailored properties.

摘要

木质素-碳水化合物复合物(LCCs)为利用木质素和碳水化合物之间的协同作用开发高价值产品提供了独特的机会。然而,高产率生产LCCs仍然是一项重大挑战。在本研究中,我们采用一种新颖的方法来有针对性地生产LCCs,以应对这一挑战。我们通过机器学习(ML)优化了AquaSolv Omni(AqSO)生物精炼工艺,以合成具有高碳水化合物含量(高达60/100 Ar)和高产率(高达15 wt%)的LCCs。与传统方法(如球磨和酶水解)相比,我们的方法显著提高了LCCs的产率。ML方法对于调整生物精炼工艺以在有限数量的实验试验中实现最佳性能至关重要。具体而言,我们利用贝叶斯优化迭代收集数据,并研究关键加工条件(温度、工艺强度和液固比)对产率和碳水化合物含量的影响。通过帕累托前沿分析,我们确定了LCC产率和碳水化合物含量之间的最佳权衡,发现了广泛的加工条件区域,这些区域可生产产率为8 - 15 wt%且碳水化合物含量在10 - 40/100 Ar范围内的LCCs。为了评估这些LCCs在高价值应用中的潜力,我们测量了它们的玻璃化转变温度(T)、表面张力和抗氧化活性。值得注意的是,我们发现碳水化合物含量高的LCCs通常表现出较低的T和表面张力。我们的生物精炼概念通过ML引导的优化得到增强,代表了朝着可扩展生产具有定制特性的LCCs迈出的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0bb/11997930/2fd3061c0688/CSSC-18-e202401711-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验