Department of Psychiatry, University of Iowa, Iowa City, IA, USA.
Behavioral Diagnostics LLC, Coralville, IA, USA.
J Insur Med. 2024 Nov 1;51(3):175-183. doi: 10.1029/AAIMEDICINE-D-24-00027.1.
BACKGROUND.—: In principle, it is generally accepted that DNA methylation measures can be used to predict mortality. However, as of yet, no epigenetic metric has been successfully incorporated into underwriting procedures. In part, this failure results from the relative incompatibility of many DNA methylation measures with conventional underwriting practices.
OBJECTIVE.—: To test the ability of previously established epigenetic markers of smoking, drinking and diabetes to standard lipid-based approaches for predicting mortality.
METHOD.—: We constructed a series of Cox proportional hazards models for mortality using clinical data and DNA methylation data from 4 previously described loci from the Framingham Heart Study.
RESULTS.—: The incorporation of vital signs, standard lipid and diabetes laboratory assessments to a base model consisting of age and sex only modestly increased prediction of mortality from 0.732 to 0.741 area under the curve (AUC). However, the addition of epigenetic marker information for smoking and drinking to the base model markedly increased prediction (AUC=0.787) while the addition of epigenetic marker for diabetes increased prediction even further (AUC=0.792).
CONCLUSION.—: These results demonstrate the potential of simple interpretable, epigenetic models to predict mortality in a manner compatible with standard underwriting procedures. Potentially, this epigenetic approach using rapid methylation sensitive digital PCR procedures that can utilize saliva or whole blood DNA would increase prediction power even further while facilitating more accurate accelerated underwriting assessments of mortality.
原则上,人们普遍认为 DNA 甲基化测量可以用于预测死亡率。然而,到目前为止,还没有一种表观遗传指标成功地纳入承销程序。部分原因是许多 DNA 甲基化测量与传统承销做法相对不兼容。
测试先前建立的吸烟、饮酒和糖尿病的表观遗传标志物在预测死亡率方面与标准脂质方法的能力。
我们使用来自弗雷明汉心脏研究的 4 个先前描述的位点的临床数据和 DNA 甲基化数据,构建了一系列用于死亡率的 Cox 比例风险模型。
仅将生命体征、标准脂质和糖尿病实验室评估纳入由年龄和性别组成的基本模型,适度增加了死亡率预测,曲线下面积(AUC)从 0.732 增加到 0.741。然而,将吸烟和饮酒的表观遗传标记信息添加到基本模型中显著增加了预测(AUC=0.787),而添加糖尿病的表观遗传标记则进一步增加了预测(AUC=0.792)。
这些结果表明,简单可解释的表观遗传模型具有预测死亡率的潜力,与标准承销程序兼容。这种使用快速甲基化敏感数字 PCR 程序的表观遗传方法,可利用唾液或全血 DNA,有可能进一步提高预测能力,同时促进更准确的加速死亡率承销评估。