Yang Ziwei, Wang Jingxiao, Wan Xiao, Xu Hongcheng, Zhang Chuanyu, Lu Xiaoke, Jing Weixuan, Guo Chuanfei, Wei Xueyong
State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
Microsyst Nanoeng. 2024 Nov 26;10(1):177. doi: 10.1038/s41378-024-00780-8.
High-sensitivity flexible pressure sensors have obtained extensive attention because of their expanding applications in e-skins and wearable medical devices for various disease diagnoses. As the representative candidate for these sensors, the iontronic microstructure has been widely proven to enhance sensation behaviors such as the sensitivity and limits of detection. However, the fast and tunable fabrication of ionic-porous sensing elastomers remains challenging because of the current template-dissolved or 3D printing methods. Here, we report a microbubble-based fabrication process that enables microporous and resilient-compliance ionogels for high-sensitivity pressure sensors. Periodic motion sliding results in a relative velocity between the imported airflow and the fluid solution, converts the airflow to microbubbles in the high-viscosity ionic fluid and promptly solidifies the fluid into a porous ionogel under ultraviolet exposure. The ultrahigh porosity of up to 95% endows the porous ionogel with superelasticity and a Young's modulus near 7 kPa. Due to the superelastic compliance and iontronic electrical double-layer effect, the porous ionogel packaged into two electrodes endows the pressure sensor with high sensitivity (684.4 kPa) over an ultrabroad range (~1 MPa) and a high-pressure resolution of 0.46%. Furthermore, the pressure sensor successfully captures high-yield broad-range signals from the fingertip low-pressure pulses (<1 kPa) to foot high-pressure activities (>500 kPa), even the grasping force of soft machine hands via an array-scanning circuit during object recognition. This microbubble-based fabrication process for porous ionogels paves the way for designing wearable sensors or permeable electronics to monitor and diagnose various diseases.
高灵敏度柔性压力传感器因其在电子皮肤和用于各种疾病诊断的可穿戴医疗设备中的应用不断拓展而受到广泛关注。作为这些传感器的代表性候选材料,离子电子微结构已被广泛证明可增强诸如灵敏度和检测限等传感行为。然而,由于目前的模板溶解或3D打印方法,离子多孔传感弹性体的快速且可调控制造仍然具有挑战性。在此,我们报告了一种基于微气泡的制造工艺,该工艺可用于制造用于高灵敏度压力传感器的微孔且具有弹性顺应性的离子凝胶。周期性运动滑动导致导入气流与流体溶液之间产生相对速度,将气流在高粘度离子流体中转化为微气泡,并在紫外线照射下迅速将流体固化成多孔离子凝胶。高达95%的超高孔隙率赋予多孔离子凝胶超弹性以及接近7 kPa的杨氏模量。由于超弹性顺应性和离子电子双电层效应,封装在两个电极之间的多孔离子凝胶使压力传感器在超宽范围(约1 MPa)内具有高灵敏度(684.4 kPa)和0.46%的高压分辨率。此外,该压力传感器成功捕获了从指尖低压脉冲(<1 kPa)到足部高压活动(>500 kPa)的高产量宽范围信号,甚至在物体识别过程中通过阵列扫描电路捕获了软机械手的抓握力。这种基于微气泡的多孔离子凝胶制造工艺为设计可穿戴传感器或可渗透电子设备以监测和诊断各种疾病铺平了道路。