Suppr超能文献

拉曼手持式光谱与显微光谱在估计人骨死后间隔时间方面的比较:一项探索性对比研究

Raman Handheld Versus Microscopic Spectroscopy for Estimating the Post-Mortem Interval of Human Bones: A Comparative Pilot Study.

作者信息

Pallua Johannes Dominikus, Louis Christina, Gattermair Nicole, Brunner Andrea, Zelger Bettina, Schirmer Michael, Badzoka Jovan, Kappacher Christoph, Huck Christian Wolfgang, Popp Jürgen, Rabl Walter, Wöss Claudia

机构信息

Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.

Institute of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria.

出版信息

Bioengineering (Basel). 2024 Nov 15;11(11):1151. doi: 10.3390/bioengineering11111151.

Abstract

The post-mortem interval estimation for human skeletal remains is critical in forensic medicine. This study used Raman spectroscopy, specifically comparing a handheld device to a Raman microscope for PMI estimations. Analyzing 99 autopsy bone samples and 5 archeological samples, the research categorized them into five PMI classes using conventional methods. Key parameters-like νPO intensity and crystallinity-were measured and analyzed. A principal component analysis effectively distinguished between PMI classes, indicating high classification accuracy for both devices. While both methods proved reliable, the fluorescence interference presented challenges in accurately determining the age of archeological samples. Ultimately, the study highlighted how Raman spectroscopy could enhance PMI estimation accuracy, especially in non-specialized labs, suggesting the potential for improved device optimization in the field.

摘要

对人类骨骼遗骸进行死后间隔时间估计在法医学中至关重要。本研究使用拉曼光谱法,具体比较了手持式设备和拉曼显微镜在死后间隔时间估计方面的表现。该研究分析了99份尸检骨样本和5份考古样本,采用传统方法将它们分为五个死后间隔时间类别。测量并分析了诸如νPO强度和结晶度等关键参数。主成分分析有效地区分了死后间隔时间类别,表明两种设备的分类准确率都很高。虽然两种方法都证明是可靠的,但荧光干扰在准确确定考古样本年代方面带来了挑战。最终,该研究强调了拉曼光谱法如何能够提高死后间隔时间估计的准确性,特别是在非专业实验室中,这表明该领域在设备优化方面具有改进的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验