Suppr超能文献

法医学中的 SNP 基因型推断——性能研究。

SNP Genotype Imputation in Forensics-A Performance Study.

机构信息

Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, SE-58758 Linköping, Sweden.

Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, SE-58183 Linköping, Sweden.

出版信息

Genes (Basel). 2024 Oct 28;15(11):1386. doi: 10.3390/genes15111386.

Abstract

BACKGROUND/OBJECTIVES: Emerging forensic genetic applications, such as forensic investigative genetic genealogy (FIGG), advanced DNA phenotyping, and distant kinship inference, increasingly require dense SNP genotype datasets. However, forensic-grade DNA often contains missing genotypes due to its quality and quantity limitations, potentially hindering these applications. Genotype imputation, a method that predicts missing genotypes, is widely used in population and medical genetics, but its utility in forensic genetics has not been thoroughly explored. This study aims to assess the performance of genotype imputation in forensic contexts and determine the conditions under which it can be effectively applied.

METHODS

We employed a simulation-based approach to generate realistic forensic SNP genotype datasets with varying numbers, densities, and qualities of observed genotypes. Genotype imputation was performed using Beagle software, and the performance was evaluated based on the call rate and imputation accuracy across different datasets and imputation settings.

RESULTS

The results demonstrate that genotype imputation can significantly increase the number of SNP genotypes. However, imputation accuracy was dependent on factors such as the quality of the original genotype data and the characteristics of the reference population. Higher SNP density and fewer genotype errors generally resulted in improved imputation accuracy.

CONCLUSIONS

This study highlights the potential of genotype imputation to enhance forensic SNP datasets but underscores the importance of optimizing imputation parameters and understanding the limitations of the original data. These findings will inform the future application of imputation in forensic genetics, supporting its integration into forensic workflows.

摘要

背景/目的:新兴的法医遗传学应用,如法医调查遗传谱系(FIGG)、先进的 DNA 表型分析和远缘亲属推断,越来越需要密集的 SNP 基因型数据集。然而,法医级别的 DNA 由于其质量和数量的限制,往往存在缺失的基因型,这可能会阻碍这些应用。基因型推断是一种预测缺失基因型的方法,在人群和医学遗传学中得到了广泛的应用,但它在法医遗传学中的应用尚未得到充分探索。本研究旨在评估基因型推断在法医背景下的性能,并确定其在何种条件下可以有效应用。

方法

我们采用基于模拟的方法生成具有不同数量、密度和观测基因型质量的现实法医 SNP 基因型数据集。使用 Beagle 软件进行基因型推断,并根据不同数据集和推断设置下的呼叫率和推断准确性来评估性能。

结果

结果表明,基因型推断可以显著增加 SNP 基因型的数量。然而,推断准确性取决于原始基因型数据的质量和参考人群的特征等因素。较高的 SNP 密度和较少的基因型错误通常会提高推断准确性。

结论

本研究强调了基因型推断在增强法医 SNP 数据集方面的潜力,但也强调了优化推断参数和理解原始数据局限性的重要性。这些发现将为基因型推断在法医遗传学中的未来应用提供信息,支持其纳入法医工作流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e532/11593911/c2459371d854/genes-15-01386-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验