Department of Computer Science & Engineering, JSS Science and Technology University, Mysuru, India.
Department of Environmental Engineering, JSS Science and Technology University, Mysuru, India.
Environ Monit Assess. 2024 Nov 27;196(12):1259. doi: 10.1007/s10661-024-13390-8.
To ensure operational efficiency, promote sustainable wastewater treatment practices, and maintain compliance with environmental regulations, it is crucial to evaluate the parameters of treated effluent in wastewater treatment plants (WWTPs). Artificial neural network (ANN) analysis is a promising tool to predict the wastewater characteristics, as a substitute to tedious laboratory techniques. It enables proactive decision-making and contributes to the overall effectiveness of the treatment processes. The primary aim of this work is to develop a robust model for predicting chemical oxygen demand (COD), a key parameter for evaluating the operational efficiency of WWTPs. The research employed a dataset consisting of 527 samples and 22 features, derived from daily sensor readings in an urban WWTP. Additionally, to enhance the efficiency of the ANN framework for regression modeling, the dataset was augmented to 1054 samples using a robust synthetic data generator known as generative adversarial networks (GAN). In this study, K-means clustering combined with principal component analysis (PCA) is employed for feature selection and anomaly detection, aiming to enhance the regression model's performance by incorporating advanced ANN extensions, including polynomial, additive, and radial basis networks. Moreover, the model optimizes ANNs using advanced heuristic techniques such as genetic algorithms (GA), ant colony optimization (ACO), and particle swarm optimization (PSO). Furthermore, the performance of the models was assessed using the R (coefficient of determination), MSE (mean squared error), and loss value metrics along with visual performance indicators. The proposed model stacked ensemble method resulted in an MSE of 0.0012 and an R score of 0.95 and the GA_ANN model, despite undergoing optimization, achieved only an R score of 0.70, indicating considerable potential for improvement. In contrast, the ACO_ANN and PSO_ANN models showed significant performance boosts, with near-perfect R scores of about 0.98 and 0.99, respectively, making them the top-performing models overall. The results outlined in this article introduce an ANN stacking ensemble regression mode framework that can aid researchers in improving the operational efficiency of treatment plants.
为了确保运营效率、促进可持续的废水处理实践,并遵守环境法规,评估废水处理厂(WWTP)中处理后废水的参数至关重要。人工神经网络(ANN)分析是一种很有前途的工具,可以替代繁琐的实验室技术来预测废水特性。它可以实现主动决策,并有助于提高处理过程的整体效率。本工作的主要目的是开发一种强大的模型,用于预测化学需氧量(COD),这是评估 WWTP 运营效率的关键参数。研究使用了一个由 527 个样本和 22 个特征组成的数据集,这些数据是从城市 WWTP 的日常传感器读数中得出的。此外,为了提高 ANN 框架回归建模的效率,使用一种称为生成对抗网络(GAN)的强大合成数据生成器将数据集扩展到 1054 个样本。在这项研究中,采用 K-均值聚类结合主成分分析(PCA)进行特征选择和异常检测,旨在通过结合先进的 ANN 扩展,包括多项式、加法和径向基网络,提高回归模型的性能。此外,该模型使用遗传算法(GA)、蚁群优化(ACO)和粒子群优化(PSO)等先进启发式技术对 ANN 进行优化。此外,还使用 R(决定系数)、MSE(均方误差)和损失值指标以及可视化性能指标评估模型的性能。所提出的模型堆叠集成方法的 MSE 为 0.0012,R 得分为 0.95,而 GA_ANN 模型尽管经过了优化,但其 R 得分为 0.70,表明有很大的改进空间。相比之下,ACO_ANN 和 PSO_ANN 模型的性能提升显著,R 得分分别接近完美的 0.98 和 0.99,是整体表现最佳的模型。本文概述的结果引入了一种 ANN 堆叠集成回归模式框架,可以帮助研究人员提高处理厂的运营效率。