Xie Jun, Chen Yuanxue, Huang Rong, Dai Wencai, Lu Jie, Wang Zifang, Gao Ming
College of Resources and Environment, Southwest University, Chongqing, 400716, China.
College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
J Environ Manage. 2025 Jan;373:123455. doi: 10.1016/j.jenvman.2024.123455. Epub 2024 Nov 26.
In recent years, anthropogenic activities have increased nitrogen (N) input into terrestrial ecosystems, profoundly impacting soil organic carbon (SOC) sequestration. However, the potential mechanisms through which N affects mineral-associated organic carbon (MAOC) and particulate organic carbon (POC) remain unclear. To address this gap, we conducted a 12-year field trial applying continuous N application (0, 90, 180, 270, and 360 kg N·ha) in a maize agro-ecosystem. We assessed plant biomass (yield, straw, and root biomass), microbial properties (enzyme activity, biomass, and diversity), soil chemistry (pH, N availability, and base ions), mineralogy (oxides and silicates), and SOC fractions to elucidate the primary control mechanisms influencing MAOC and POC. Our findings showed that N application increased SOC and POC by 6.56%-10.4% and 43.1%-54.0%, respectively, but decreased MAOC by 7.31%-17.1%. And N application increased plant biomass, but decreased soil pH (pH from 6.7 to 5.6), base ion concentrations (K⁺, Na⁺, Ca⁺, Mg⁺), amorphous oxides, and illite content. Partial least squares path model (PLS-PM) and correlation analyses indicated that N application enhances root biomass while increasing microbial decomposition, and ultimately their combined effect increased POC. The decline in MAOC is primarily attributed to soil acidification decreasing the C input from microbial residues, altering mineral composition and diminishing the minerals' capacity to protect SOC. Thus, our study demonstrates that N addition predominantly increases POC through enhanced root biomass, while reducing MAOC by decreasing microbial biomass and weakening mineral protection. These insights provide a deeper understanding of the mechanisms governing SOC fraction dynamics in answer to N inputs in agroecosystems.
近年来,人为活动增加了陆地生态系统中的氮(N)输入,对土壤有机碳(SOC)固存产生了深远影响。然而,氮影响矿物结合有机碳(MAOC)和颗粒有机碳(POC)的潜在机制仍不清楚。为了填补这一空白,我们在一个玉米农业生态系统中进行了一项为期12年的田间试验,连续施用氮肥(0、90、180、270和360 kg N·ha)。我们评估了植物生物量(产量、秸秆和根系生物量)、微生物特性(酶活性、生物量和多样性)、土壤化学性质(pH值、氮有效性和碱性离子)、矿物学(氧化物和硅酸盐)以及SOC组分,以阐明影响MAOC和POC的主要控制机制。我们的研究结果表明,施用氮肥使SOC和POC分别增加了6.56%-10.4%和43.1%-54.0%,但使MAOC减少了7.31%-17.1%。施用氮肥增加了植物生物量,但降低了土壤pH值(从6.7降至5.6)、碱性离子浓度(K⁺、Na⁺、Ca⁺、Mg⁺)、无定形氧化物和伊利石含量。偏最小二乘路径模型(PLS-PM)和相关性分析表明,施用氮肥增加了根系生物量,同时增强了微生物分解作用,最终它们的综合作用增加了POC。MAOC的下降主要归因于土壤酸化减少了微生物残体的碳输入,改变了矿物组成并降低了矿物保护SOC的能力。因此,我们的研究表明,添加氮肥主要通过增加根系生物量来增加POC,同时通过减少微生物生物量和削弱矿物保护作用来降低MAOC。这些见解为深入理解农业生态系统中氮输入响应下SOC组分动态变化的调控机制提供了帮助。